Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3035
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCigdem, Ozkan-
dc.contributor.authorSoyak, Refik-
dc.contributor.authorAydeniz, Burhan-
dc.contributor.authorOguz, Kaya-
dc.contributor.authorDemirel, Hasan-
dc.contributor.authorKitis, Omer-
dc.contributor.authorEker, Cagdas-
dc.date.accessioned2023-06-16T14:53:44Z-
dc.date.available2023-06-16T14:53:44Z-
dc.date.issued2019-
dc.identifier.isbn978-1-7281-2420-9-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3035-
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 03-05, 2019 -- Izmir, TURKEYen_US
dc.description.abstractThree Dimensional magnetic resonance imaging (3D-MRI) has been utilized to classify patients with neuroanatomical abnormalities apart from healthy controls (HCs). The studies on the diagnosis of Bipolar Disorder (BD) focuses also on the unaffected relatives of BD patients in order to examine the heritable resistance factors associated with the disorder. Hence, the comparison of Healthy Siblings of Bipolar Disorder patients (HSBDs) and HCs is also required owing to the high heritability of BD. In this paper, the classification of 27HSBDs from 38HCs has been studied by using 3D-MRI and Computer-Aided Detection (CAD). The pre-processing of 3D-MRI data is performed by taking advantage of Voxel-Based Morphometry (VBM) and the structural deformations in the Gray Matter (GM) and White Matter (WM) are obtained by using a general linear model. The model is configured by using a two sample t-test technique and Total Intracranial Volume (TIV) as a covariate. The altered voxels between data groups are considered as Voxel of Interests (VOIs) and the 3D masks are generated for GM and WM tissue probability maps. The Relief-F algorithm is utilized to rank the features and a Fisher Criterion (FC) method is considered to determine the number of top-ranked discriminative features. The performances of Support Vector Machines (SVM) and the Naive Bayes (NB) algorithms are compared on the classification of HSBD and HC. The experiments are performed for GM-only, WM-only, and their combinations. The experimental results indicate that the changes between the brain regions of HSBD and HC might provide information on the heritable factors associated with the BD. Additionally, it is concluded that using the combination of GM and WM tissue probability map provides better results than considering them, separately. Finally, it is obtained that the classification accuracy of SVM on HSBD and HC comparison is better than that of NB.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Katip Celebi Univ, Biyomedikal Muhendisligi Bolumuen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 Medıcal Technologıes Congress (Tıptekno)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHealthy siblings of bipolar disorder patientsen_US
dc.subjectSPM12en_US
dc.subjectSVMen_US
dc.subjectNaive Bayesen_US
dc.subjectBrainen_US
dc.subjectRisken_US
dc.titleClassification of Healthy Siblings of Bipolar Disorder Patients from Healthy Controls Using MRIen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO.2019.8895015-
dc.identifier.scopus2-s2.0-85075611227en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridUnay, Devrim/0000-0003-3478-7318-
dc.authoridAydeniz, Burhan/0000-0002-5629-2335-
dc.authorideker, mehmet cagdas/0000-0001-5496-9587-
dc.authoridOguz, Kaya/0000-0002-1860-9127-
dc.authorwosidUnay, Devrim/AAE-6908-2020-
dc.authorwosidAydeniz, Burhan/GYU-5547-2022-
dc.authorwosideker, mehmet cagdas/A-9215-2018-
dc.authorwosidGönül, Ali Saffet/Z-3031-2019-
dc.authorwosidOguz, Kaya/A-1812-2016-
dc.identifier.startpage129en_US
dc.identifier.endpage132en_US
dc.identifier.wosWOS:000516830900034en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextreserved-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
crisitem.author.dept05.05. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2166.pdf
  Restricted Access
565.38 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

78
checked on Nov 25, 2024

Download(s)

6
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.