Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3037
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAyanzadeh, Aydin-
dc.contributor.authorYagar, Huseyin Onur-
dc.contributor.authorOzuysal, Ozden Yalcin-
dc.contributor.authorOkvur, Devrim Pesen-
dc.contributor.authorToreyin, Behcet Ugur-
dc.contributor.authorUnay, Devrim-
dc.contributor.authorOnal, Sevgi-
dc.date.accessioned2023-06-16T14:53:44Z-
dc.date.available2023-06-16T14:53:44Z-
dc.date.issued2019-
dc.identifier.isbn978-1-7281-2420-9-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3037-
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 03-05, 2019 -- Izmir, TURKEYen_US
dc.description.abstractThe quantitative and qualitative ascertainment of cell culture is integral to the robust determination of the cell structure analysis. Microscopy cell analysis and the epithet structures of cells in cell cultures are momentous in the fields of the biological research process. In this paper, we addressed the problem of phase-contrast microscopy under cell segmentation application. In our proposed method, we utilized the state-of-the-art deep learning models trained on our proposed dataset. Due to the low number of annotated images, we propose a multi-resolution network which is based on the U-Net architecture. Moreover, we applied multi-combination augmentation to our dataset which has increased the performance of segmentation accuracy significantly. Experimental results suggest that the proposed model provides superior performance in comparison to traditional state-of-the-art segmentation algorithms.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Katip Celebi Univ, Biyomedikal Muhendisligi Bolumuen_US
dc.description.sponsorshipMarie Curie IRG grant [FP7 PIRG08-GA-2010-27697]; Vodafone Turkey [ITUVF20180901P04]; ITU BAP [MGA-2017-40964]en_US
dc.description.sponsorshipThe data used in this study is collected under the Marie Curie IRG grant (no: FP7 PIRG08-GA-2010-27697).; Aydin Ayanzadeh's work is supported, in part, by Vodafone Turkey, under project no. ITUVF20180901P04 within the context of ITU Vodafone Future Lab R&D program.; This work is in part funded by ITU BAP MGA-2017-40964en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 Medıcal Technologıes Congress (Tıptekno)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learningen_US
dc.subjectphase-contrast microscopyen_US
dc.subjectcell segmentationen_US
dc.titleCell Segmentation of 2D Phase-Contrast Microscopy Images with Deep Learning Methoden_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO.2019.8894978-
dc.identifier.scopus2-s2.0-85075595764en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridUnay, Devrim/0000-0003-3478-7318-
dc.authoridToreyin, Behcet Ugur/0000-0003-4406-2783-
dc.authoridAyanzadeh, Aydin/0000-0002-8816-3204-
dc.authorwosidUnay, Devrim/AAE-6908-2020-
dc.authorwosidToreyin, Behcet Ugur/ABI-6849-2020-
dc.authorwosidAyanzadeh, Aydin/O-8380-2019-
dc.authorwosidOnal, Sevgi/AAO-8438-2021-
dc.identifier.startpage86en_US
dc.identifier.endpage89en_US
dc.identifier.wosWOS:000516830900023en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2167.pdf
  Restricted Access
577.28 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 20, 2024

Page view(s)

80
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.