Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3162
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Degirmenci, Murside | - |
dc.contributor.author | Akan, Aydin | - |
dc.date.accessioned | 2023-06-16T14:55:20Z | - |
dc.date.available | 2023-06-16T14:55:20Z | - |
dc.date.issued | 2020 | - |
dc.identifier.isbn | 978-1-7281-8073-1 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3162 | - |
dc.description | 2020 Medical Technologies Congress (TIPTEKNO) -- NOV 19-20, 2020 -- ELECTR NETWORK | en_US |
dc.description.abstract | Epilepsy is a type of neurological disorder that causes abnormal brain activities and creates epileptic seizures. Traditionally epileptic seizure prediction is realized with a visual examination of Electroencephalogram (EEG) signals. But this technique needs a long time EEG monitoring. So, the automatic epileptic seizures prediction schemes become a requirement at this point. This study proposes a method to classify epileptic seizures and normal EEG data by utilizing the Intrinsic Time-scale Decomposition (ITD)-based features. The dataset has been supplied from the database of the Epileptology Department of Bonn University. It contains 5 data groups A, B, C, D, E. The study aims to classify healthy and epileptic data, so data of groups A and E arc used to perform evaluations of proposed methods. The EEG data are decomposed into Proper Rotation Components (PRCs) by ITD. The feature extraction methods are applied to the first five PRCs of each EEG data from healthy and epileptic individuals. These features are classified using K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Naive Bayes, Support Vector Machine (SVM) and Logistic Regression classifiers. The results demonstrated that the epileptic data is differentiated from normal data by applying the nonlinear ITD with outstanding classification performance. | en_US |
dc.description.sponsorship | Biyomedikal ve Klinik Muhendisligi Dernegi,Izmir Ekonomi Univ,Izmir Katip Celebi Univ | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2020 Medıcal Technologıes Congress (Tıptekno) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | EEG | en_US |
dc.subject | Electroencephalogram | en_US |
dc.subject | Epileptic Seizures | en_US |
dc.subject | Intrinsic Time-Scale Decomposition | en_US |
dc.subject | Empirical Mode Decomposition | en_US |
dc.subject | Classification | en_US |
dc.subject | Signals | en_US |
dc.subject | Features | en_US |
dc.title | EEG based Fpileptic Seizures Detection using Intrinsic Time-Scale Decomposition | en_US |
dc.type | Conference Object | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.identifier.wos | WOS:000659419900048 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2289.pdf Restricted Access | 134.17 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
WEB OF SCIENCETM
Citations
2
checked on Nov 20, 2024
Page view(s)
62
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.