Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3162
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDegirmenci, Murside-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:55:20Z-
dc.date.available2023-06-16T14:55:20Z-
dc.date.issued2020-
dc.identifier.isbn978-1-7281-8073-1-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3162-
dc.description2020 Medical Technologies Congress (TIPTEKNO) -- NOV 19-20, 2020 -- ELECTR NETWORKen_US
dc.description.abstractEpilepsy is a type of neurological disorder that causes abnormal brain activities and creates epileptic seizures. Traditionally epileptic seizure prediction is realized with a visual examination of Electroencephalogram (EEG) signals. But this technique needs a long time EEG monitoring. So, the automatic epileptic seizures prediction schemes become a requirement at this point. This study proposes a method to classify epileptic seizures and normal EEG data by utilizing the Intrinsic Time-scale Decomposition (ITD)-based features. The dataset has been supplied from the database of the Epileptology Department of Bonn University. It contains 5 data groups A, B, C, D, E. The study aims to classify healthy and epileptic data, so data of groups A and E arc used to perform evaluations of proposed methods. The EEG data are decomposed into Proper Rotation Components (PRCs) by ITD. The feature extraction methods are applied to the first five PRCs of each EEG data from healthy and epileptic individuals. These features are classified using K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Naive Bayes, Support Vector Machine (SVM) and Logistic Regression classifiers. The results demonstrated that the epileptic data is differentiated from normal data by applying the nonlinear ITD with outstanding classification performance.en_US
dc.description.sponsorshipBiyomedikal ve Klinik Muhendisligi Dernegi,Izmir Ekonomi Univ,Izmir Katip Celebi Univen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2020 Medıcal Technologıes Congress (Tıptekno)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEEGen_US
dc.subjectElectroencephalogramen_US
dc.subjectEpileptic Seizuresen_US
dc.subjectIntrinsic Time-Scale Decompositionen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectClassificationen_US
dc.subjectSignalsen_US
dc.subjectFeaturesen_US
dc.titleEEG based Fpileptic Seizures Detection using Intrinsic Time-Scale Decompositionen_US
dc.typeConference Objecten_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.identifier.wosWOS:000659419900048en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2289.pdf
  Restricted Access
134.17 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

62
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.