Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3345
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMüller H.-
dc.contributor.authorÜnay D.-
dc.date.accessioned2023-06-16T14:57:54Z-
dc.date.available2023-06-16T14:57:54Z-
dc.date.issued2019-
dc.identifier.isbn9781119376996-
dc.identifier.isbn9781119376972-
dc.identifier.urihttps://doi.org/10.1002/9781119376996.ch12-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3345-
dc.description.abstractMedical decision support has traditionally been using model-based approaches and small data sets for evaluation. This chapter analyses recent trends and techniques that make use of increasingly large data sets and thus more data-driven approaches to medical decision support that have in some areas replaced the more traditional rule-based approaches. It explains the challenge infrastructures and approaches as they are often essential to access data, and application scenarios give examples of existing applications and objectives. The chapter focuses on how to overcome current limitations and how to tackle the upcoming challenges of image-based decision support for digital medicine. It reviews the literature of mainly the past five years in the field of medical visual decision support and highlights the use of multimodal data and data-driven approaches. Machine learning is an indispensable part of medical decision support, especially in diagnostic and categorization applications. © 2019 John Wiley & Sons Ltd.en_US
dc.language.isoenen_US
dc.publisherwileyen_US
dc.relation.ispartofBig Data Analytics for Large-Scale Multimedia Searchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCategorization applicationsen_US
dc.subjectDiagnostic applicationsen_US
dc.subjectDigital medicineen_US
dc.subjectImage-based decision supporten_US
dc.subjectLarge multimodal dataen_US
dc.subjectMachine learningen_US
dc.subjectMedical decision supporten_US
dc.titleMedical Decision Support Using Increasingly Large Multimodal Data Setsen_US
dc.typeBook Parten_US
dc.identifier.doi10.1002/9781119376996.ch12-
dc.identifier.scopus2-s2.0-85082389242en_US
dc.authorscopusid7404945007-
dc.identifier.startpage317en_US
dc.identifier.endpage336en_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeBook Part-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2449.pdf
  Restricted Access
1.35 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

56
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.