Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3357
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEren L.T.-
dc.contributor.authorKumova Metin, Senem-
dc.date.accessioned2023-06-16T14:57:55Z-
dc.date.available2023-06-16T14:57:55Z-
dc.date.issued2018-
dc.identifier.isbn9.78303E+12-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-11027-7_6-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3357-
dc.description7th International Conference on Analysis of Images, Social Networks and Texts, AIST 2018 -- 5 July 2018 through 7 July 2018 -- 222599en_US
dc.description.abstractThe semantic compositionality presents the relation between the meanings of word combinations and their components. Simply, in non-compositional expressions, the words combine to generate a different meaning. This is why, identification of non-compositional expressions (e.g. idioms) become important in natural language processing tasks such as machine translation and word sense disambiguation. In this study, we explored the performance of vector space models in detection of non-compositional expressions in Turkish. A data set of 2229 uninterrupted two-word combinations that is built from six different Turkish corpora is utilized. Three sets of five different vector space models are employed in the experiments. The evaluation of models is performed using well-known accuracy and F-measures. The experimental results showed that the model that measures the similarity between the vectors of word combination and the second composing word produced higher average F-scores for all testing corpora. © Springer Nature Switzerland AG 2018.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSemantic compositionalityen_US
dc.subjectTurkishen_US
dc.subjectVector space modelen_US
dc.subjectImage analysisen_US
dc.subjectNatural language processing systemsen_US
dc.subjectPetroleum reservoir evaluationen_US
dc.subjectSemanticsen_US
dc.subjectVectorsen_US
dc.subjectCompositionalityen_US
dc.subjectData seten_US
dc.subjectF measureen_US
dc.subjectMachine translationsen_US
dc.subjectTurkishsen_US
dc.subjectVector space modelsen_US
dc.subjectWord combinationsen_US
dc.subjectWord Sense Disambiguationen_US
dc.subjectVector spacesen_US
dc.titleVector space models in detection of semantically non-compositional word combinations in Turkishen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-030-11027-7_6-
dc.identifier.scopus2-s2.0-85059958576en_US
dc.authorscopusid57218787981-
dc.identifier.volume11179 LNCSen_US
dc.identifier.startpage53en_US
dc.identifier.endpage63en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.04. Software Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
AT2-31-3357-VectorSpace.pdf199.36 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

48
checked on Nov 18, 2024

Download(s)

16
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.