Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3363
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErcan-Teksen H.-
dc.contributor.authorAnagün, Ahmet Sermet-
dc.date.accessioned2023-06-16T14:57:56Z-
dc.date.available2023-06-16T14:57:56Z-
dc.date.issued2020-
dc.identifier.isbn9.78303E+12-
dc.identifier.issn2194-5357-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-23756-1_137-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3363-
dc.descriptionInternational Conference on Intelligent and Fuzzy Systems, INFUS 2019 -- 23 July 2019 through 25 July 2019 -- 228529en_US
dc.description.abstractControl chart is a quality branch that provides information about the process. Fuzzy logic theory is suitable especially for non-measurable data. Using of fuzzy sets for control charts is reasonable given that the data are subjective for qualitative control charts. For this reason, studies of fuzzy control charts are included in the literature. In the literature, fuzzy control charts are generally generated using ordinary fuzzy sets. There is no study about intuitionistic fuzzy control charts in the literature. However, in a process, especially for qualitative data, if some data are considered as intuitionistic fuzzy numbers, corresponding control charts should be created. First of all, within the purpose of this study, upper control limit and lower control limit will be created for intuitionistic fuzzy c-control charts. The other purpose of this study is to generate fuzzy control charts using the intuitionistic fuzzy comparison methods. © 2020, Springer Nature Switzerland AG.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofAdvances in Intelligent Systems and Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy control chartsen_US
dc.subjectIntuitionistic fuzzy comparison methodsen_US
dc.subjectIntuitionistic fuzzy setsen_US
dc.subjectControl chartsen_US
dc.subjectDecision makingen_US
dc.subjectFlowchartingen_US
dc.subjectFuzzy controlen_US
dc.subjectFuzzy logicen_US
dc.subjectFuzzy setsen_US
dc.subjectGraphic methodsen_US
dc.subjectComparison methodsen_US
dc.subjectFuzzy logic theoryen_US
dc.subjectIntuitionistic fuzzyen_US
dc.subjectIntuitionistic Fuzzy numberen_US
dc.subjectIntuitionistic fuzzy setsen_US
dc.subjectLower control limiten_US
dc.subjectQualitative controlen_US
dc.subjectUpper control limiten_US
dc.subjectQuality controlen_US
dc.titleIntuitionistic fuzzy c-control charts using fuzzy comparison methodsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-030-23756-1_137-
dc.identifier.scopus2-s2.0-85069529590en_US
dc.authorscopusid57201252410-
dc.identifier.volume1029en_US
dc.identifier.startpage1161en_US
dc.identifier.endpage1169en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
AT2-33-3363-Instituonic.pdf
  Restricted Access
555.42 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

Page view(s)

74
checked on Nov 25, 2024

Download(s)

6
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.