Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3373
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmetoğlu Taşdemir, Funda-
dc.contributor.authorSeker S.-
dc.date.accessioned2023-06-16T14:57:58Z-
dc.date.available2023-06-16T14:57:58Z-
dc.date.issued2022-
dc.identifier.isbn9.78303E+12-
dc.identifier.issn2367-3370-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-85626-7_75-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3373-
dc.descriptionInternational Conference on Intelligent and Fuzzy Systems, INFUS 2021 -- 24 August 2021 through 26 August 2021 -- 264409en_US
dc.description.abstractThe Covid-19 pandemic has brought too many concerns in businesses whether they will survive or fail. This is what makes forecasting crucial since it guides businesses in order to make appropriate decisions. In a pandemic environment, forecasting is critical because there is little historical data available. Taking this into consideration, in this study, fuzzy time series (FTS) and grey model (GM), which do not require long past time series data are implemented for short term forecasting of a product sold on a dedicated social media account. After adopting monthly sales data of the related product, accuracy of fuzzy time series and grey model are improved with parameter optimization. According to the results of absolute percentage error (APE), both methods demonstrate superior forecasting accuracies when the product shows an increasing sales trend. This study can also be a reference for businesses that are positively affected by the pandemic due to increased sales and willing to act on the opportunities it has already emerged. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Networks and Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectFuzzy time seriesen_US
dc.subjectGrey modelen_US
dc.titleFuzzy Time Series and Grey Theory Forecasting for the Sales of Cleaning Productsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-030-85626-7_75-
dc.identifier.scopus2-s2.0-85115045905en_US
dc.authorscopusid57262199900-
dc.identifier.volume307en_US
dc.identifier.startpage641en_US
dc.identifier.endpage648en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

48
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.