Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3378
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhani M.U.-
dc.contributor.authorErdil E.-
dc.contributor.authorKanık S.D.-
dc.contributor.authorArgunşah A.Ö.-
dc.contributor.authorHobbiss A.F.-
dc.contributor.authorIsraely I.-
dc.contributor.authorÜnay D.-
dc.date.accessioned2023-06-16T14:57:58Z-
dc.date.available2023-06-16T14:57:58Z-
dc.date.issued2016-
dc.identifier.isbn9.78332E+12-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://doi.org/10.1007/978-3-319-46604-0_19-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3378-
dc.descriptionComputer Vision - ECCV 2016 Workshops, Proceedings -- 8 October 2016 through 16 October 2016 -- 184029en_US
dc.description.abstractFunctional properties of neurons are strongly coupled with their morphology. Changes in neuronal activity alter morphological characteristics of dendritic spines. First step towards understanding the structure-function relationship is to group spines into main spine classes reported in the literature. Shape analysis of dendritic spines can help neuroscientists understand the underlying relationships. Due to unavailability of reliable automated tools, this analysis is currently performed manually which is a time-intensive and subjective task. Several studies on spine shape classification have been reported in the literature, however, there is an on-going debate on whether distinct spine shape classes exist or whether spines should be modeled through a continuum of shape variations. Another challenge is the subjectivity and bias that is introduced due to the supervised nature of classification approaches. In this paper, we aim to address these issues by presenting a clustering perspective. In this context, clustering may serve both confirmation of known patterns and discovery of new ones. We perform cluster analysis on two-photon microscopic images of spines using morphological, shape, and appearance based features and gain insights into the spine shape analysis problem. We use histogram of oriented gradients (HOG), disjunctive normal shape models (DNSM), morphological features, and intensity profile based features for cluster analysis.We use x-means to perform cluster analysis that selects the number of clusters automatically using the Bayesian information criterion (BIC). For all features, this analysis produces 4 clusters and we observe the formation of at least one cluster consisting of spines which are difficult to be assigned to a known class. This observation supports the argument of intermediate shape types. © Springer International Publishing Switzerland 2016.en_US
dc.description.sponsorship113E603; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAKen_US
dc.description.sponsorshipThis work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 113E603, and by TUBITAK-2218 Fellowship for Postdoctoral Researchers.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClusteringen_US
dc.subjectDendritic spinesen_US
dc.subjectMicroscopyen_US
dc.subjectNeuroimagingen_US
dc.subjectShape analysisen_US
dc.subjectX-meansen_US
dc.subjectNeuroimagingen_US
dc.subjectNeuronsen_US
dc.subjectAutomated toolsen_US
dc.subjectClusteringsen_US
dc.subjectDendritic spineen_US
dc.subjectFunctional propertiesen_US
dc.subjectMorphological characteristicen_US
dc.subjectNeuronal activitiesen_US
dc.subjectShape classificationen_US
dc.subjectShape-analysisen_US
dc.subjectStructure-function relationshipen_US
dc.subjectX-meansen_US
dc.subjectCluster analysisen_US
dc.titleDendritic spine shape analysis: A clustering perspectiveen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-319-46604-0_19-
dc.identifier.scopus2-s2.0-84989826836en_US
dc.authorscopusid43561269300-
dc.authorscopusid56734443000-
dc.authorscopusid24723512300-
dc.authorscopusid55642298300-
dc.authorscopusid24511960600-
dc.authorscopusid55922238900-
dc.authorscopusid6602852406-
dc.identifier.volume9913 LNCSen_US
dc.identifier.startpage256en_US
dc.identifier.endpage273en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2482.pdf
  Restricted Access
1.37 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 20, 2024

Page view(s)

50
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.