Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3397
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrestwich S.D.-
dc.contributor.authorTarim S.A.-
dc.contributor.authorRossi R.-
dc.contributor.authorHnich B.-
dc.date.accessioned2023-06-16T14:58:01Z-
dc.date.available2023-06-16T14:58:01Z-
dc.date.issued2008-
dc.identifier.isbn3540884386-
dc.identifier.isbn9783540884385-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://doi.org/10.1007/978-3-540-88439-2_2-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3397-
dc.description5th International Workshop on Hybrid Metaheuristics, HM 2008 -- 8 October 2008 through 9 October 2008 -- Malaga -- 74367en_US
dc.description.abstractReinforcement Learning algorithms such as SARSA with an eligibility trace, and Evolutionary Computation methods such as genetic algorithms, are competing approaches to solving Partially Observable Markov Decision Processes (POMDPs) which occur in many fields of Artificial Intelligence. A powerful form of evolutionary algorithm that has not previously been applied to POMDPs is the cultural algorithm, in which evolving agents share knowledge in a belief space that is used to guide their evolution. We describe a cultural algorithm for POMDPs that hybridises SARSA with a noisy genetic algorithm, and inherits the latter's convergence properties. Its belief space is a common set of state-action values that are updated during genetic exploration, and conversely used to modify chromosomes. We use it to solve problems from stochastic inventory control by finding memoryless policies for nondeterministic POMDPs. Neither SARSA nor the genetic algorithm dominates the other on these problems, but the cultural algorithm outperforms the genetic algorithm, and on highly non-Markovian instances also outperforms SARSA. © 2008 Springer Berlin Heidelberg.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGenetic algorithmsen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectInventory controlen_US
dc.subjectLearning algorithmsen_US
dc.subjectMarkov processesen_US
dc.subjectReinforcement learningen_US
dc.subjectStochastic systemsen_US
dc.subjectConvergence propertiesen_US
dc.subjectCultural Algorithmen_US
dc.subjectEligibility tracesen_US
dc.subjectMemoryless policyen_US
dc.subjectNon-Markovianen_US
dc.subjectPartially observable Markov decision processen_US
dc.subjectShare knowledgeen_US
dc.subjectStochastic inventory controlsen_US
dc.subjectEvolutionary algorithmsen_US
dc.titleA cultural algorithm for pomdps from stochastic inventory controlen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-540-88439-2_2-
dc.identifier.scopus2-s2.0-57049126222en_US
dc.authorscopusid7004234709-
dc.authorscopusid35563636800-
dc.authorscopusid6602458958-
dc.identifier.volume5296 LNCSen_US
dc.identifier.startpage16en_US
dc.identifier.endpage28en_US
dc.identifier.wosWOS:000260605500002en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2503.pdf390.5 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 20, 2024

Page view(s)

68
checked on Nov 18, 2024

Download(s)

20
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.