Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3400
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrestwich S.-
dc.contributor.authorTarim S.A.-
dc.contributor.authorRossi R.-
dc.contributor.authorHnich B.-
dc.date.accessioned2023-06-16T14:58:01Z-
dc.date.available2023-06-16T14:58:01Z-
dc.date.issued2009-
dc.identifier.isbn3642042430-
dc.identifier.isbn9783642042430-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://doi.org/10.1007/978-3-642-04244-7_53-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3400-
dc.descriptionAssociation for Constraint Programming (ACP);Natl. Inf. Commun. Technol. Australia NICTA;Foundation for Science and Technology (FCT);Centre for Artificial Intelligence (CENTRIA);Portuguese Association for Artificial Intelligence (APPIA)en_US
dc.description15th International Conference on Principles and Practice of Constraint Programming, CP 2009 -- 20 September 2009 through 24 September 2009 -- Lisbon -- 77835en_US
dc.description.abstractStochastic Constraint Programming is an extension of Constraint Programming for modelling and solving combinatorial problems involving uncertainty. A solution to such a problem is a policy tree that specifies decision variable assignments in each scenario. Several solution methods have been proposed but none seems practical for large multi-stage problems. We propose an incomplete approach: specifying a policy tree indirectly by a parameterised function, whose parameter values are found by evolutionary search. On some problems this method is orders of magnitude faster than a state-of-the-art scenario-based approach, and it also provides a very compact representation of policy trees. © 2009 Springer Berlin Heidelberg.en_US
dc.description.sponsorshipSOBAG-108K027; Science Foundation Ireland, SFI: 05/IN/I886; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAKen_US
dc.description.sponsorshipB. Hnich is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027. This material is based in part upon works supported by the Science Foundation Ireland under Grant No. 05/IN/I886.en_US
dc.language.isoenen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCombinatorial problemen_US
dc.subjectCompact representationen_US
dc.subjectConstraint programmingen_US
dc.subjectDecision variablesen_US
dc.subjectEvolutionary searchen_US
dc.subjectMulti-stage problemen_US
dc.subjectOrders of magnitudeen_US
dc.subjectParameter valuesen_US
dc.subjectSolution methodsen_US
dc.subjectStochastic constraintsen_US
dc.subjectComputer programmingen_US
dc.subjectConstraint theoryen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectUnmanned aerial vehicles (UAV)en_US
dc.subjectProblem solvingen_US
dc.titleEvolving parameterised policies for stochastic constraint programmingen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-642-04244-7_53-
dc.identifier.scopus2-s2.0-70350423545en_US
dc.authorscopusid7004234709-
dc.authorscopusid35563636800-
dc.authorscopusid6602458958-
dc.identifier.volume5732 LNCSen_US
dc.identifier.startpage684en_US
dc.identifier.endpage691en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityN/A-
item.grantfulltextembargo_20300101-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2508.pdf
  Until 2030-01-01
176.27 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

12
checked on Nov 20, 2024

Page view(s)

54
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.