Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3403
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz S.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:58:02Z-
dc.date.available2023-06-16T14:58:02Z-
dc.date.issued2010-
dc.identifier.isbn3642122388-
dc.identifier.isbn9783642122385-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://doi.org/10.1007/978-3-642-12239-2_35-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3403-
dc.descriptionCentre for Emergent Computing at Edinburgh Napier University;Istanbul Technical University;Microsoft Turkey;Scientific and Technological Research Council of Turkeyen_US
dc.descriptionEvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, EvoApplicatons 2010 -- 7 April 2010 through 9 April 2010 -- Istanbul -- 80273en_US
dc.description.abstractWith an ever-growing attention Particle Swarm Optimization (PSO) has found many application areas for many challenging optimization problems. It is, however, a known fact that PSO has a severe drawback in the update of its global best (gbest) particle, which has a crucial role of guiding the rest of the swarm. In this paper, we propose two efficient solutions to remedy this problem using a stochastic approximation (SA) technique. For this purpose we use simultaneous perturbation stochastic approximation (SPSA), which is applied only to the gbest (not to the entire swarm) for a low-cost solution. Since the problem of poor gbest update persists in the recently proposed extension of PSO, called multi-dimensional PSO (MD-PSO), two distinct SA approaches are then integrated into MD-PSO and tested over a set of unsupervised data clustering applications. Experimental results show that the proposed approaches significantly improved the quality of the MD-PSO clustering as measured by a validity index function. Furthermore, the proposed approaches are generic as they can be used with other PSO variants and applicable to a wide range of problems. © 2010 Springer-Verlag Berlin Heidelberg.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDynamic data clusteringen_US
dc.subjectGradient descenten_US
dc.subjectMulti-dimensional searchen_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectStochastic approximationen_US
dc.subjectApproximation theoryen_US
dc.subjectCluster analysisen_US
dc.subjectClustering algorithmsen_US
dc.subjectGradient methodsen_US
dc.subjectStochastic systemsen_US
dc.subjectTraffic signalsen_US
dc.subjectDynamic dataen_US
dc.subjectGradient descenten_US
dc.subjectLow-cost solutionen_US
dc.subjectMulti dimensionalen_US
dc.subjectMulti-dimensional particle swarm optimizationsen_US
dc.subjectOptimization problemsen_US
dc.subjectSimultaneous perturbation stochastic approximationen_US
dc.subjectStochastic approximationsen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.titleDynamic data clustering using stochastic approximation driven multi-dimensional particle swarm optimizationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-642-12239-2_35-
dc.identifier.scopus2-s2.0-77952330401en_US
dc.authorscopusid7801632948-
dc.authorscopusid7005332419-
dc.identifier.volume6024 LNCSen_US
dc.identifier.issuePART 1en_US
dc.identifier.startpage336en_US
dc.identifier.endpage343en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2511.pdf326.76 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

266
checked on Nov 18, 2024

Download(s)

22
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.