Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3405
Title: Distributed Weighted Node Shortest Path Routing for Wireless Sensor Networks
Authors: Yilmaz O.
Erciyes K.
Keywords: Communication cost
Energy efficient
Hierarchical routings
Limited energies
Network lifetime
Shortest path algorithms
Shortest path routing
Wireless channel errors
Energy efficiency
Graph theory
Parallel architectures
Routing algorithms
Sensor nodes
Abstract: Routing in Wireless Sensor Networks contains challenges, including limited energy constraints, network density, wireless channel errors. Different approaches exist in literature to overcome these challenges, such as data centric, location based and hierarchical routing. Most routing protocols in Wireless Sensor Networks are dealing with energy efficiency and network lifetime. In this paper, we present a shortest path routing algorithm based on Chandy-Misra's distributed shortest path algorithm regarding both node weight and edge weight. X percent of edge's weight and (100 - X) percent of node's weight form a total cost between neighbor and source node which is used in order to generate the shortest paths and construct a spanning tree. Variation of X percent, node weight and edge weight provide resilience for shaping needed paths and change the spanning tree's structure. When at least one node is close to critical energy level or a fault occurs, the routing algorithm is re-executed and new paths are generated. In order to obtain energy efficient paths, high network lifetime and finding out the overheads, we analyze the simulation results by assigning the battery level to node weight, communication cost to edge weight and %10, %30, %60 and %80 to X separately. © Springer-Verlag Berlin Heidelberg 2010.
Description: 2nd International Conference on Wireless and Mobile networks, WiMo 2010 -- 26 June 2010 through 28 June 2010 -- Ankara -- 98058
URI: https://doi.org/10.1007/978-3-642-14171-3_26
https://hdl.handle.net/20.500.14365/3405
ISBN: 9.78364E+12
ISSN: 1865-0929
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection

Files in This Item:
File SizeFormat 
2513.pdf
  Until 2030-01-01
326.43 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 27, 2024

Page view(s)

54
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.