Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3408
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArdalan A.-
dc.contributor.authorSelen E.S.-
dc.contributor.authorDashti H.-
dc.contributor.authorTalaat A.-
dc.contributor.authorAssadi A.-
dc.date.accessioned2023-06-16T14:58:03Z-
dc.date.available2023-06-16T14:58:03Z-
dc.date.issued2011-
dc.identifier.isbn9.78364E+12-
dc.identifier.issn1868-4238-
dc.identifier.urihttps://doi.org/10.1007/978-3-642-19170-1_13-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3408-
dc.description.abstractTuberculosis is a treatable but severe disease caused by Mycobacterium tuberculosis (Mtb). Recent statistics by international health organizations estimate the Mtb exposure to have reached over two billion individuals. Delay in disease diagnosis could be fatal, especially to the population at risk, such as individuals with compromised immune systems. Intelligent decision systems (IDS) provide a promising tool to expedite discovery of biomarkers, and to boost their impact on earlier prediction of the likelihood of the disease onset. A novel IDS (iTB) is designed that integrates results from molecular medicine and systems biology of Mtb infection to estimate model parameters for prediction of the dynamics of the gene networks in Mtb-infected laboratory animals. The mouse model identifies a number of genes whose expressions could be significantly altered during the TB activation. Among them, a much smaller number of the most informative genes for prediction of the onset of TB are selected using a modified version of Empirical Risk Minimization as in Vapnik's statistical learning theory. A hybrid intelligent system is designed to take as input the mRNA abundance at a near genome-size from the individual-to-be-tested, measured 3-4 times. The algorithms determine if that individual is at risk of the onset of the disease based on our current analysis of mRNA data, and to predict the values of the biomarkers for a future period (of up to 60 days for mice; this may differ for humans). An early warning sign allows conducting gene expression analysis during the activation which aims to find key genes that are expressed. With rapid advances in low-cost genome-based diagnosis, this IDS architecture provides a promising platform to advance Personalized Health Care based on sequencing the genome and microarray analysis of samples obtained from individuals at risk. The novelty of the design of iTB lies in the integration of the IDS design principles and the solution of the biological problems hand-in-hand, so as to provide an AI framework for biologically better-targeted personalized prevention/treatment for the high-risk groups. The iTB design applies in more generality, and provides the potential for extension of our AI-approach to personalized-medicine to prevent other public health pandemics. © 2011 IFIP International Federation for Information Processing.en_US
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.relation.ispartofIFIP Advances in Information and Communication Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectbiomarkers and intelligent decision systemsen_US
dc.subjectearly detectionen_US
dc.subjectMycobacterium tuberculosisen_US
dc.subjectVapnik's statistical learning theoryen_US
dc.subjectActivation analysisen_US
dc.subjectBiomarkersen_US
dc.subjectChemical activationen_US
dc.subjectComputation theoryen_US
dc.subjectDecision theoryen_US
dc.subjectDiagnosisen_US
dc.subjectForecastingen_US
dc.subjectGene expressionen_US
dc.subjectHealth risksen_US
dc.subjectIntelligent systemsen_US
dc.subjectMammalsen_US
dc.subjectNetwork securityen_US
dc.subjectPublic healthen_US
dc.subjectEmpirical risk minimizationen_US
dc.subjectGene expression analysisen_US
dc.subjectHybrid intelligent systemen_US
dc.subjectIntelligent decision systemsen_US
dc.subjectMycobacterium tuberculosisen_US
dc.subjectPersonalized healthcareen_US
dc.subjectPersonalized medicinesen_US
dc.subjectStatistical learning theoryen_US
dc.subjectRisk assessmenten_US
dc.titleDesign and applications of intelligent systems in identifying future occurrence of tuberculosis infection in population at risken_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-642-19170-1_13-
dc.identifier.scopus2-s2.0-79952237485en_US
dc.authorscopusid57193404306-
dc.authorscopusid56600153100-
dc.authorscopusid6701689618-
dc.authorscopusid7003910411-
dc.identifier.volume349 AICTen_US
dc.identifier.startpage117en_US
dc.identifier.endpage128en_US
dc.identifier.wosWOS:000292495500013en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2516.pdf988.67 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

70
checked on Nov 25, 2024

Download(s)

18
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.