Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3413
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBulut O.-
dc.contributor.authorTasgetiren M.F.-
dc.contributor.authorFadiloğlu, Murat-
dc.date.accessioned2023-06-16T14:58:04Z-
dc.date.available2023-06-16T14:58:04Z-
dc.date.issued2012-
dc.identifier.isbn978-3-642-25943-2-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://doi.org/10.1007/978-3-642-25944-9_8-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3413-
dc.descriptionIEEE Computational Intelligence Society;International Neural Network Society;National Science Foundation of Chinaen_US
dc.description7th International Conference on Intelligent Computing, ICIC 2011 -- 11 August 2011 through 14 August 2011 -- Zhengzhou -- 88035en_US
dc.description.abstractIn this study, we propose a genetic algorithm (GA) for the economic lot scheduling problem (ELSP) under extended basic period (EBP) approach and power-of-two (PoT) policy. The proposed GA employs a multi-chromosome solution representation to encode PoT multipliers and the production positions separately. Both feasible and infeasible solutions are maintained in the population through the use of some sophisticated constraint handling methods. Furthermore, a variable neighborhood search (VNS) algorithm is also fused into GA to further enhance the solution quality. The experimental results show that the proposed GA is very competitive to the best performing algorithms from the existing literature under the EBP and PoT policy. © 2012 Springer-Verlag.en_US
dc.language.isoenen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEconomic lot scheduling problemen_US
dc.subjectextended basic perioden_US
dc.subjectgenetic algorithmen_US
dc.subjectpower-of-two policyen_US
dc.subjectvariable neighborhood searchen_US
dc.subjectConstraint handlingen_US
dc.subjectEconomic lot scheduling problemsen_US
dc.subjectextended basic perioden_US
dc.subjectPower-of-twoen_US
dc.subjectPower-of-two policiesen_US
dc.subjectSolution qualityen_US
dc.subjectSolution representationen_US
dc.subjectVariable neighborhood searchen_US
dc.subjectComputation theoryen_US
dc.subjectIntelligent computingen_US
dc.subjectOperations researchen_US
dc.subjectGenetic algorithmsen_US
dc.titleA genetic algorithm for the economic lot scheduling problem under extended basic period approach and power-of-two policyen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-642-25944-9_8-
dc.identifier.scopus2-s2.0-84855665274en_US
dc.authorscopusid35168573500-
dc.authorscopusid6602212401-
dc.identifier.volume6839 LNAIen_US
dc.identifier.startpage57en_US
dc.identifier.endpage65en_US
dc.identifier.wosWOS:000306498200008en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
3413.pdf
  Restricted Access
173.61 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

84
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.