Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3414
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:59:20Z-
dc.date.available2023-06-16T14:59:20Z-
dc.date.issued2012-
dc.identifier.isbn9.78364E+12-
dc.identifier.issn1865-0929-
dc.identifier.urihttps://doi.org/10.1007/978-3-642-30507-8_33-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3414-
dc.descriptionBCS The Chartered Institute for IT;Springer;IEEE - UAE Computer Sectionen_US
dc.description4th International Conference on Networked Digital Technologies, NDT 2012 -- 24 April 2012 through 26 April 2012 -- Dubai -- 98079en_US
dc.description.abstractLarge-scale commercial image databases are getting increasingly common and popular, and nowadays several services over them are being offered via Internet. They are truly dynamic in nature where new image(s), categories and visual descriptors can be introduced in any time. In order to address this need, in this paper, we propose a scalable content- based classification and retrieval framework using a novel collective network of (evolutionary) binary classifier (CNBC) system to achieve high classification and content-based retrieval performances over commercial image repositories. The proposed CNBC framework is designed to cope up with incomplete training (ground truth) data and/or low-level features extracted in a dynamically varying image database and thus the system can be evolved incrementally to adapt the change immediately. Such a self-adaptation is achieved by basically adopting a "Divide and Conquer" type approach by allocating an individual network of binary classifiers (NBCs) to discriminate each image category and performing evolutionary search to find the optimal binary classifier (BC) in each NBC. Furthermore, by means of this approach, a large set of low-level visual features can be effectively used within CNBC, which in turn selects and combines them so as to achieve highest discrimination among each individual class. Experiments demonstrate a high classification accuracy and efficiency of the proposed framework over a large and dynamic commercial database using only low-level visual features. © Springer-Verlag Berlin Heidelberg 2012.en_US
dc.language.isoenen_US
dc.relation.ispartofCommunications in Computer and Information Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcontent-based image classificationen_US
dc.subjectcontent-based image retrievalen_US
dc.subjectevolutionary neural networksen_US
dc.subjectMultilayer Perceptronen_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectClassification accuracy and efficiencyen_US
dc.subjectContent based image retrievalen_US
dc.subjectContent-baseden_US
dc.subjectContent-based classificationen_US
dc.subjectEvolutionary neural networken_US
dc.subjectEvolutionary searchen_US
dc.subjectMulti layer perceptronen_US
dc.subjectRetrieval frameworksen_US
dc.subjectClassification (of information)en_US
dc.subjectClassifiersen_US
dc.subjectContent based retrievalen_US
dc.subjectDatabase systemsen_US
dc.subjectImage classificationen_US
dc.subjectInformation retrievalen_US
dc.subjectNeural networksen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectSearch enginesen_US
dc.titleScalable Content-Based Classification and Retrieval Framework for Dynamic Commercial Image Databasesen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-642-30507-8_33-
dc.identifier.scopus2-s2.0-84880453633en_US
dc.authorscopusid7801632948-
dc.authorscopusid7005332419-
dc.identifier.volume293 PART 1en_US
dc.identifier.startpage382en_US
dc.identifier.endpage398en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
AT-12-3414-Scalabbe.pdf
  Restricted Access
12.1 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

248
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.