Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3437
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz S.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorChowdhury M.E.H.-
dc.contributor.authorDegerli A.-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:59:23Z-
dc.date.available2023-06-16T14:59:23Z-
dc.date.issued2022-
dc.identifier.isbn9780323857871-
dc.identifier.isbn9780323885720-
dc.identifier.urihttps://doi.org/10.1016/B978-0-32-385787-1.00024-5-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3437-
dc.description.abstractIn this chapter, recent state-of-the-art techniques in biosignal time-series analysis will be presented. We shall start with the problem of patient-specific ECG beat classification where the objective is to discriminate the arrhythmic beats from the normal (healthy) beats of an individual patient. So, we will answer the ultimate question of how to design person-specific, real-time, and accurate monitoring of ECG signals. We shall then move on to the recent solution of a related problem, an early warning system that can alert an individual the instant his/her heart deviates from its normal rhythm. This is a far challenging problem since the detection of the arrhythmia beats should be performed without knowing them. © 2022 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofDeep Learning for Robot Perception and Cognitionen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArrhythmia detectionen_US
dc.subjectCOVID-19en_US
dc.subjectDeep learningen_US
dc.subjectMortality risk predictionen_US
dc.subjectMyocardial infarctionen_US
dc.titleBiosignal time-series analysisen_US
dc.typeBook Parten_US
dc.identifier.doi10.1016/B978-0-32-385787-1.00024-5-
dc.identifier.scopus2-s2.0-85130653569en_US
dc.authorscopusid7801632948-
dc.authorscopusid8964151000-
dc.authorscopusid57207685567-
dc.authorscopusid7005332419-
dc.identifier.startpage491en_US
dc.identifier.endpage539en_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeBook Part-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
AT15-3437-Biosignal.pdf
  Restricted Access
3.45 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

Page view(s)

246
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.