Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3464
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZabihi M.-
dc.contributor.authorKiranyaz S.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:59:26Z-
dc.date.available2023-06-16T14:59:26Z-
dc.date.issued2013-
dc.identifier.isbn9.78185E+12-
dc.identifier.urihttps://doi.org/10.1049/cp.2013.2060-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3464-
dc.descriptionIET Intelligent Signal Processing Conference 2013, ISP 2013 -- 2 December 2013 through 3 December 2013 -- London -- 102962en_US
dc.description.abstractThe contemporary diagnosis of epileptic seizures is dominated by non-invasive EEG signal analysis and classification. In this paper, we propose a patient-specific seizure detection technique, which selects the optimal feature subsets and trains a dedicated classifier for each patient in order to maximize the classification performance. Our method exploits time domain, frequency domain, time-frequency domain and non-linear feature sets. Then, by using Conditional Mutual Information Maximization (CMIM) as the feature selection method the optimal feature subset is chosen over which the Support Vector Machine is trained as the classifier. In this study, both train and test sets contain 50% of seizure and non-seizure segments of the EEG signal. From the CHB-MIT Scalp benchmark EEG dataset, we used the EEG data from four subjects with overall 21 hours of recording. Support Vector Machine (SVM) with linear kernel is used as the classifier. The experimental results show a delicate classification performance over the test set: I.e., an average of 90.62% sensitivity and 99.32% specificity are acquired when all channels and recordings are used to form a composite feature vector. In addition, an average of 93.78% sensitivity and a specificity of 99.05% are obtained using CMIM.en_US
dc.language.isoenen_US
dc.relation.ispartofIET Conference Publicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConditional mutual information maximizationen_US
dc.subjectSeizure detectionen_US
dc.subjectSupport vector machineen_US
dc.subjectClassification performanceen_US
dc.subjectConditional mutual informationen_US
dc.subjectEpileptic seizure detectionen_US
dc.subjectEpileptic seizuresen_US
dc.subjectFeature selection methodsen_US
dc.subjectNonlinear featuresen_US
dc.subjectSeizure detectionen_US
dc.subjectTime frequency domainen_US
dc.subjectElectroencephalographyen_US
dc.subjectFrequency domain analysisen_US
dc.subjectImage retrievalen_US
dc.subjectNeurophysiologyen_US
dc.subjectPediatricsen_US
dc.subjectSignal processingen_US
dc.subjectTime domain analysisen_US
dc.subjectSupport vector machinesen_US
dc.titlePatient-specific epileptic seizure detection in long-term EEG recording in paediatric patients with intractable seizuresen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1049/cp.2013.2060-
dc.identifier.scopus2-s2.0-84896850134en_US
dc.authorscopusid54897751900-
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.identifier.volume2013en_US
dc.identifier.issue619 CPen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2560.pdf1.81 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Nov 20, 2024

Page view(s)

232
checked on Nov 18, 2024

Download(s)

32
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.