Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3492
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSelvi E.-
dc.contributor.authorSelver M.A.-
dc.contributor.authorGüzeliş C.-
dc.contributor.authorDicle O.-
dc.date.accessioned2023-06-16T14:59:30Z-
dc.date.available2023-06-16T14:59:30Z-
dc.date.issued2014-
dc.identifier.issn1742-6588-
dc.identifier.urihttps://doi.org/10.1088/1742-6596/490/1/012079-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3492-
dc.description2nd International Conference on Mathematical Modeling in Physical Sciences 2013, IC-MSQUARE 2013 -- 1 September 2013 through 5 September 2013 -- Prague -- 103396en_US
dc.description.abstractSegmentation of anatomical structures from medical image series is an ongoing field of research. Although, organs of interest are three-dimensional in nature, slice-by-slice approaches are widely used in clinical applications because of their ease of integration with the current manual segmentation scheme. To be able to use slice-by-slice techniques effectively, adjacent slice information, which represents likelihood of a region to be the structure of interest, plays critical role. Recent studies focus on using distance transform directly as a feature or to increase the feature values at the vicinity of the search area. This study presents a novel approach by constructing a higher order neural network, the input layer of which receives features together with their multiplications with the distance transform. This allows higher-order interactions between features through the non-linearity introduced by the multiplication. The application of the proposed method to 9 CT datasets for segmentation of the liver shows higher performance than well-known higher order classification neural networks. © Published under licence by IOP Publishing Ltd.en_US
dc.language.isoenen_US
dc.publisherInstitute of Physics Publishingen_US
dc.relation.ispartofJournal of Physics: Conference Seriesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassification (of information)en_US
dc.subjectComputerized tomographyen_US
dc.subjectImage segmentationen_US
dc.subjectMedical imagingen_US
dc.subjectNeural networksen_US
dc.subjectAnatomical structuresen_US
dc.subjectClinical applicationen_US
dc.subjectDistance transformsen_US
dc.subjectFeature valuesen_US
dc.subjectHigher order neural networken_US
dc.subjectInput layersen_US
dc.subjectManual segmentationen_US
dc.subjectSegmentation performanceen_US
dc.subjectMedical image processingen_US
dc.titleA higher-order neural network design for improving segmentation performance in medical image seriesen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1088/1742-6596/490/1/012079-
dc.identifier.scopus2-s2.0-84896917056en_US
dc.authorscopusid55807179700-
dc.authorscopusid55937768800-
dc.authorscopusid6603673759-
dc.identifier.volume490en_US
dc.identifier.issue1en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2588.pdf778.41 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

50
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.