Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3502
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nakmouche M.F. | - |
dc.contributor.author | Derbal M.C. | - |
dc.contributor.author | Allam A.M.M.A. | - |
dc.contributor.author | Fawzy D.E. | - |
dc.contributor.author | Shams S.I. | - |
dc.contributor.author | Nedil M. | - |
dc.contributor.author | Elsaadany M. | - |
dc.date.accessioned | 2023-06-16T14:59:32Z | - |
dc.date.available | 2023-06-16T14:59:32Z | - |
dc.date.issued | 2021 | - |
dc.identifier.isbn | 9.78173E+12 | - |
dc.identifier.uri | https://doi.org/10.1109/APS/URSI47566.2021.9704795 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3502 | - |
dc.description | IEEE Antennas and Propagation Society (AP-S);US National Committee (USNC) of the International Union of Radio Science (URSI) | en_US |
dc.description | 2021 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, APS/URSI 2021 -- 4 December 2021 through 10 December 2021 -- 177295 | en_US |
dc.description.abstract | Machine learning has been used in this work for the development of a Ku band Ridge Gap Waveguide (RGW) slot antenna loaded with an FSS superstrate for satellite internet applications. The structure operates from 13.25 to 14.75 GHz with a gain beyond 10 dB using FSS superstrate loading. The developed machine learning model aims to predict the optimal length and width of the radiated slot, where both the Fractional Bandwidth (FBW) and the resonance frequency are considered objective parameters. The simulated results and the anticipated results through the machine learning algorithm are in good agreement. © 2021 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 2021 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, APS/URSI 2021 - Proceedings | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | ANN | en_US |
dc.subject | Frequency Selective Surfaces | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Ridge Gap Waveguide (RGW) | en_US |
dc.subject | Superstrate | en_US |
dc.subject | Bandwidth | en_US |
dc.subject | Learning algorithms | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Microwave antennas | en_US |
dc.subject | Ridge waveguides | en_US |
dc.subject | Slot antennas | en_US |
dc.subject | ANN | en_US |
dc.subject | Frequency-selective surfaces | en_US |
dc.subject | Gap waveguides | en_US |
dc.subject | Internet application | en_US |
dc.subject | Ku band | en_US |
dc.subject | Machine-learning | en_US |
dc.subject | Ridge gap waveguide | en_US |
dc.subject | Satellite internet | en_US |
dc.subject | Superstrates | en_US |
dc.subject | Waveguide slot antennas | en_US |
dc.subject | Frequency selective surfaces | en_US |
dc.title | Machine Learning Based Design of Ku Band Ridge Gap Waveguide Slot Antenna Loaded with FSS for Satellite Internet Applications | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/APS/URSI47566.2021.9704795 | - |
dc.identifier.scopus | 2-s2.0-85124043097 | en_US |
dc.authorscopusid | 57206657916 | - |
dc.authorscopusid | 55582327600 | - |
dc.authorscopusid | 23011278600 | - |
dc.authorscopusid | 57201750748 | - |
dc.authorscopusid | 8320837800 | - |
dc.authorscopusid | 36190739600 | - |
dc.authorscopusid | 21833761700 | - |
dc.identifier.startpage | 1881 | en_US |
dc.identifier.endpage | 1882 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2598.pdf Restricted Access | 414.46 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
3
checked on Nov 20, 2024
Page view(s)
96
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.