Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3505
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Oguz K. | - |
dc.date.accessioned | 2023-06-16T14:59:32Z | - |
dc.date.available | 2023-06-16T14:59:32Z | - |
dc.date.issued | 2019 | - |
dc.identifier.isbn | 9.78173E+12 | - |
dc.identifier.uri | https://doi.org/10.1109/ASYU48272.2019.8946413 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3505 | - |
dc.description | 2019 Innovations in Intelligent Systems and Applications Conference, ASYU 2019 -- 31 October 2019 through 2 November 2019 -- 156545 | en_US |
dc.description.abstract | Genetic algorithms can be used to evolve finite state machines for problems that require a large number of states and transitions. Tartarus problem is such a problem in which the purpose is to push the boxes towards the walls of a six by six grid using a bulldozer that can only sense its 8-neighbourhood. The bulldozer can rotate left, right, or move forward, each taking a single move out of its initial 80 moves. The result is scored by the number of boxes that are against a wall when the bulldozer is out of moves. Several approaches have been proposed, with genetic algorithms being the most common. We are proposing a representation of the problem using varying number of states and adaptive modification of the mutation parameter to decrease the probability of the population getting stuck at a local minima. Our results show improvement over the application of the genetic algorithm without parameter modification and dependency on the number states and the size of the population. © 2019 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | Proceedings - 2019 Innovations in Intelligent Systems and Applications Conference, ASYU 2019 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | adaptive parameter modification | en_US |
dc.subject | evolutionary algorithms | en_US |
dc.subject | finite state machines | en_US |
dc.subject | genetic algorithms | en_US |
dc.subject | Tartarus problem | en_US |
dc.subject | Earthmoving machinery | en_US |
dc.subject | Evolutionary algorithms | en_US |
dc.subject | Finite automata | en_US |
dc.subject | Genetic algorithms | en_US |
dc.subject | Intelligent systems | en_US |
dc.subject | Adaptive evolution | en_US |
dc.subject | Adaptive parameters | en_US |
dc.subject | Local minimums | en_US |
dc.subject | Number of state | en_US |
dc.subject | Number state | en_US |
dc.subject | Parameter modification | en_US |
dc.subject | Tartarus problem | en_US |
dc.subject | Parameter estimation | en_US |
dc.title | Adaptive Evolution of Finite State Machines for the Tartarus Problem | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/ASYU48272.2019.8946413 | - |
dc.identifier.scopus | 2-s2.0-85078323914 | en_US |
dc.authorscopusid | 54902980200 | - |
dc.identifier.wos | WOS:000631252400012 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.05. Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2599.pdf Restricted Access | 308.97 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 20, 2024
Page view(s)
100
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.