Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3505
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOguz K.-
dc.date.accessioned2023-06-16T14:59:32Z-
dc.date.available2023-06-16T14:59:32Z-
dc.date.issued2019-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/ASYU48272.2019.8946413-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3505-
dc.description2019 Innovations in Intelligent Systems and Applications Conference, ASYU 2019 -- 31 October 2019 through 2 November 2019 -- 156545en_US
dc.description.abstractGenetic algorithms can be used to evolve finite state machines for problems that require a large number of states and transitions. Tartarus problem is such a problem in which the purpose is to push the boxes towards the walls of a six by six grid using a bulldozer that can only sense its 8-neighbourhood. The bulldozer can rotate left, right, or move forward, each taking a single move out of its initial 80 moves. The result is scored by the number of boxes that are against a wall when the bulldozer is out of moves. Several approaches have been proposed, with genetic algorithms being the most common. We are proposing a representation of the problem using varying number of states and adaptive modification of the mutation parameter to decrease the probability of the population getting stuck at a local minima. Our results show improvement over the application of the genetic algorithm without parameter modification and dependency on the number states and the size of the population. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2019 Innovations in Intelligent Systems and Applications Conference, ASYU 2019en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectadaptive parameter modificationen_US
dc.subjectevolutionary algorithmsen_US
dc.subjectfinite state machinesen_US
dc.subjectgenetic algorithmsen_US
dc.subjectTartarus problemen_US
dc.subjectEarthmoving machineryen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectFinite automataen_US
dc.subjectGenetic algorithmsen_US
dc.subjectIntelligent systemsen_US
dc.subjectAdaptive evolutionen_US
dc.subjectAdaptive parametersen_US
dc.subjectLocal minimumsen_US
dc.subjectNumber of stateen_US
dc.subjectNumber stateen_US
dc.subjectParameter modificationen_US
dc.subjectTartarus problemen_US
dc.subjectParameter estimationen_US
dc.titleAdaptive Evolution of Finite State Machines for the Tartarus Problemen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU48272.2019.8946413-
dc.identifier.scopus2-s2.0-85078323914en_US
dc.authorscopusid54902980200-
dc.identifier.wosWOS:000631252400012en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.05. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2599.pdf
  Restricted Access
308.97 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

100
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.