Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3507
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarakaya D.-
dc.contributor.authorUlucan O.-
dc.contributor.authorTurkan M.-
dc.date.accessioned2023-06-16T14:59:33Z-
dc.date.available2023-06-16T14:59:33Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/ASYU50717.2020.9259847-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3507-
dc.description2020 Innovations in Intelligent Systems and Applications Conference, ASYU 2020 -- 15 October 2020 through 17 October 2020 -- 165305en_US
dc.description.abstractIn the last decades, the electronic nose technology has been providing considerable advantages in practical applications including food and beverage quality assessment, medical diagnosis, security systems and air monitoring. Electronic nose systems include both hardware and software components. Sensors allow the system to collect gas/odor samples and the software carries out the classification process. While choosing robust, sensitive and compact elements is significant for the hardware requirements, the key point in the software part is selecting the appropriate algorithm, which is typically a challenging, time consuming and laborious process. Therefore in this study, an extensive comparison of the most commonly employed unsupervised data analysis algorithms in practical electronic nose applications is carried out. These approaches are also compared with supervised methods. Frequently used four dimensionality reduction techniques and four distinct clustering and classification algorithms are employed aiming at choosing the most suitable algorithms for further research in this domain. © 2020 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2020 Innovations in Intelligent Systems and Applications Conference, ASYU 2020en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectclassificationen_US
dc.subjectclusteringen_US
dc.subjectdimensionality reductionen_US
dc.subjectElectronic noseen_US
dc.subjectunsupervised learningen_US
dc.subjectClustering algorithmsen_US
dc.subjectDiagnosisen_US
dc.subjectDimensionality reductionen_US
dc.subjectElectronic assessmenten_US
dc.subjectInformation analysisen_US
dc.subjectIntelligent systemsen_US
dc.subjectMonitoringen_US
dc.subjectSensory aidsen_US
dc.subjectClassification algorithmen_US
dc.subjectClassification processen_US
dc.subjectComparative studiesen_US
dc.subjectData analysis toolen_US
dc.subjectDimensionality reduction techniquesen_US
dc.subjectElectronic nose systemsen_US
dc.subjectHardware and software componentsen_US
dc.subjectQuality assessmenten_US
dc.subjectElectronic noseen_US
dc.titleA Comparative Study on Electronic Nose Data Analysis Toolsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU50717.2020.9259847-
dc.identifier.scopus2-s2.0-85097931440en_US
dc.authorscopusid57212583921-
dc.authorscopusid14069326000-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.10. Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2601.pdf
  Restricted Access
225.73 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

Page view(s)

64
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.