Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3508
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOguz K.-
dc.contributor.authorKorkmaz I.-
dc.contributor.authorKorkmaz B.-
dc.contributor.authorAkkaya G.-
dc.contributor.authorAlici C.-
dc.contributor.authorKilic E.-
dc.date.accessioned2023-06-16T14:59:33Z-
dc.date.available2023-06-16T14:59:33Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/ASYU50717.2020.9259854-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3508-
dc.description2020 Innovations in Intelligent Systems and Applications Conference, ASYU 2020 -- 15 October 2020 through 17 October 2020 -- 165305en_US
dc.description.abstractNew research fields and applications on human computer interaction will emerge based on the recognition of emotions on faces. With such aim, our study evaluates the features extracted from faces to recognize emotions. To increase the success rate of these features, we have run several tests to demonstrate how age and gender affect the results. The artificial neural networks were trained by the apparent regions on the face such as eyes, eyebrows, nose, mouth, and jawline and then the networks are tested with different age and gender groups. According to the results, faces of older people have a lower performance rate of emotion recognition. Then, age and gender based groups are created manually, and we show that performance rates of facial emotion recognition have increased for the networks that are trained using these particular groups. © 2020 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2020 Innovations in Intelligent Systems and Applications Conference, ASYU 2020en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectartificial neural networksen_US
dc.subjectclassificationen_US
dc.subjectfacial emotion recognitionen_US
dc.subjectHuman computer interactionen_US
dc.subjectIntelligent systemsen_US
dc.subjectNeural networksen_US
dc.subjectSpeech recognitionen_US
dc.subjectEmotion recognitionen_US
dc.subjectFacial emotionsen_US
dc.subjectOlder Peopleen_US
dc.subjectRecognition of emotionen_US
dc.subjectResearch fieldsen_US
dc.subjectFace recognitionen_US
dc.titleEffect of Age and Gender on Facial Emotion Recognitionen_US
dc.title.alternativeYüzden Duygu Tanimlamada Yaş ve Cinsiyet Etkisien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU50717.2020.9259854-
dc.identifier.scopus2-s2.0-85097943762en_US
dc.authorscopusid54902980200-
dc.authorscopusid57220957974-
dc.authorscopusid57220953512-
dc.authorscopusid57220957805-
dc.authorscopusid57220954010-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.05. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2602.pdf
  Restricted Access
1.16 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

78
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.