Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUlucan O.-
dc.contributor.authorKarakaya D.-
dc.contributor.authorTurkan M.-
dc.date.accessioned2023-06-16T14:59:33Z-
dc.date.available2023-06-16T14:59:33Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/ASYU50717.2020.9259867-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3509-
dc.description2020 Innovations in Intelligent Systems and Applications Conference, ASYU 2020 -- 15 October 2020 through 17 October 2020 -- 165305en_US
dc.description.abstractAssessing the quality of seafood both in retail and during packaging at the production side must be carried out minutely in order to avoid spoilage which causes severe human health problems and also economic loss. Since the illnesses and decay in seafood presents distinct symptoms in different species, primarily the classification of species is required. In this field, the inadequacy of the current laborious and slow traditional methods can be overcome with systems based on machine learning and image processing, which present fast and precise results. In order design such systems, practical and suitable datasets are required. However, most of the publicly available datasets are not fit for the mentioned purpose. These datasets either contain images taken underwater or consist of seafood which is generally not (widely) consumed. In this study, a practical and large dataset containing nine distinct seafood widely consumed in the Aegean Region of Turkey is formed. Additionally, comprehensive experiments based on different classification approaches are performed to analyze the usability of this collected dataset. Experimental results demonstrate very promising outcomes; therefore, this dataset will be made publicly available for further investigations in this research domain. © 2020 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2020 Innovations in Intelligent Systems and Applications Conference, ASYU 2020en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectclassificationen_US
dc.subjectfeature extractionen_US
dc.subjectFish dataseten_US
dc.subjectfood quality assessmenten_US
dc.subjectsegmentationen_US
dc.subjectImage processingen_US
dc.subjectIntelligent systemsen_US
dc.subjectLarge dataseten_US
dc.subjectLossesen_US
dc.subjectMeatsen_US
dc.subjectAegean regionsen_US
dc.subjectClassification approachen_US
dc.subjectEconomic lossen_US
dc.subjectFish segmentationsen_US
dc.subjectHuman health problemsen_US
dc.subjectLarge-scale dataseten_US
dc.subjectOn-machinesen_US
dc.subjectResearch domainsen_US
dc.subjectClassification (of information)en_US
dc.titleA Large-Scale Dataset for Fish Segmentation and Classificationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU50717.2020.9259867-
dc.identifier.scopus2-s2.0-85097939469en_US
dc.authorscopusid57212583565-
dc.authorscopusid14069326000-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.10. Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2603.pdf
  Restricted Access
2.49 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

45
checked on Nov 20, 2024

Page view(s)

86
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.