Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3510
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBelhan C.-
dc.contributor.authorFikirdanis D.-
dc.contributor.authorCimen O.-
dc.contributor.authorPasinli P.-
dc.contributor.authorAkgun Z.-
dc.contributor.authorYayci Z.O.-
dc.contributor.authorTurkan M.-
dc.date.accessioned2023-06-16T14:59:33Z-
dc.date.available2023-06-16T14:59:33Z-
dc.date.issued2021-
dc.identifier.isbn9.78167E+12-
dc.identifier.urihttps://doi.org/10.1109/ASYU52992.2021.9599016-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3510-
dc.descriptionIEEE SMC Society;IEEE Turkey Sectionen_US
dc.description2021 Innovations in Intelligent Systems and Applications Conference, ASYU 2021 -- 6 October 2021 through 8 October 2021 -- 174400en_US
dc.description.abstractLip reading, described as extracting speech data from the observable deeds in the face, particularly the jaws, lips, tongue and teeth, is a very challenging task. It is indeed a beneficial skill that helps people to comprehend and interpret the content of other people's speech, when it is not sufficient to recognize either audio or expression. Even experts require a certain level of experience and need an understanding of visual expressions to interpret spoken words. However, this may not be efficient enough for the process. Nowadays, lip sequences can be converted into expressive words and phrases with the aid of computers. Thus, the usage of neural networks (NNs) is increased rapidly in this field. The main contribution of this study is to use Short-Time Fourier Transformed (STFT) audio data as an extra image input and employing 3D Convolutional NNs (CNNs) for feature extraction. This generates features considering the change in consecutive frames and makes use of visual and auditory data together with the attributes from the image. After testing several experimental scenarios, it turns out to be the proposed method has a strong promise for further development in this research domain. © 2021 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2021 Innovations in Intelligent Systems and Applications Conference, ASYU 2021en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject3D convolutional neural networken_US
dc.subjectaudio-visual speech recognitionen_US
dc.subjectautomatic speech recognitionen_US
dc.subjectLip readingen_US
dc.subjectshort-time Fourier Transformen_US
dc.subjectConvolutionen_US
dc.subjectSpeechen_US
dc.subjectSpeech recognitionen_US
dc.subject3d convolutional neural networken_US
dc.subjectAudiovisual speech recognitionen_US
dc.subjectAutomatic speech recognitionen_US
dc.subjectConvolutional neural networken_US
dc.subjectFourieren_US
dc.subjectLip readingen_US
dc.subjectNeural-networksen_US
dc.subjectShort time Fourier transformsen_US
dc.subjectSpeech dataen_US
dc.subjectSpoken wordsen_US
dc.subjectConvolutional neural networksen_US
dc.titleAudio-Visual Speech Recognition using 3D Convolutional Neural Networksen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU52992.2021.9599016-
dc.identifier.scopus2-s2.0-85123175238en_US
dc.authorscopusid57224918896-
dc.authorscopusid57419656500-
dc.authorscopusid57420178400-
dc.authorscopusid57420002100-
dc.authorscopusid57419831800-
dc.authorscopusid14069326000-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.10. Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2605.pdf
  Restricted Access
5.87 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

66
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.