Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3520
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz S.-
dc.contributor.authorUhlmann S.-
dc.contributor.authorPulkkinen J.-
dc.contributor.authorGabbouj, Moncef-
dc.contributor.authorİnce, Türker-
dc.date.accessioned2023-06-16T15:00:42Z-
dc.date.available2023-06-16T15:00:42Z-
dc.date.issued2011-
dc.identifier.isbn9.78142E+12-
dc.identifier.urihttps://doi.org/10.1109/EAIS.2011.5945925-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3520-
dc.descriptionIEEE Computational Intelligence Societyen_US
dc.descriptionSymposium Series on Computational Intelligence, IEEE SSCI 2011 - 2011 IEEE 5th Workshop on Evolving and Adaptive Intelligent Systems, EAIS 2011 -- 11 April 2011 through 15 April 2011 -- Paris -- 85920en_US
dc.description.abstractThe content-based image retrieval (CBIR) has been an active research field for which several feature extraction, classification and retrieval techniques have been proposed up to date. However, when the database size grows larger, it is a common fact that the overall retrieval performance significantly deteriorates. In this paper, we propose collective network of (evolutionary) binary classifiers (CNBC) framework to achieve a high retrieval performance even though the training (ground truth) data may not be entirely present from the beginning and thus the system can only be trained incrementally. The CNBC framework basically adopts a "Divide and Conquer" type approach by allocating several networks of binary classifiers (NBCs) to discriminate each class and performs evolutionary search to find the optimal binary classifier (BC) in each NBC. In such an evolution session, the CNBC body can further dynamically adapt itself with each new incoming class/feature set without a full-scale re-training or re-configuration. Both visual and numerical performance evaluations of the proposed framework over benchmark image databases demonstrate its scalability; and a significant performance improvement is achieved over traditional retrieval techniques. © 2011 IEEE.en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE SSCI 2011: Symposium Series on Computational Intelligence - EAIS 2011: 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcontent-based image retrievalen_US
dc.subjectevolutionary classifiersen_US
dc.subjectmulti-dimensional particle swarm optimizationen_US
dc.subjectBinary classifiersen_US
dc.subjectContent based image retrievalen_US
dc.subjectDatabase sizeen_US
dc.subjectDivide and conqueren_US
dc.subjectevolutionary classifiersen_US
dc.subjectEvolutionary searchen_US
dc.subjectGround truthen_US
dc.subjectImage databaseen_US
dc.subjectParticle swarmen_US
dc.subjectPerformance evaluationen_US
dc.subjectPerformance improvementsen_US
dc.subjectResearch fieldsen_US
dc.subjectRetrieval performanceen_US
dc.subjectRetrieval techniquesen_US
dc.subjectContent based retrievalen_US
dc.subjectFeature extractionen_US
dc.subjectInformation retrievalen_US
dc.subjectIntelligent systemsen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectSearch enginesen_US
dc.titleCollective network of evolutionary binary classifiers for content-based image retrievalen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/EAIS.2011.5945925-
dc.identifier.scopus2-s2.0-80051493668en_US
dc.authorscopusid7801632948-
dc.authorscopusid26665019900-
dc.authorscopusid7005332419-
dc.authorscopusid56259806600-
dc.identifier.startpage147en_US
dc.identifier.endpage154en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2614.pdf
  Restricted Access
487.32 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 20, 2024

Page view(s)

236
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.