Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3549
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz S.-
dc.contributor.authorPulkkinen J.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T15:00:46Z-
dc.date.available2023-06-16T15:00:46Z-
dc.date.issued2011-
dc.identifier.isbn9.78146E+12-
dc.identifier.issn1522-4880-
dc.identifier.urihttps://doi.org/10.1109/ICIP.2011.6116508-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3549-
dc.descriptionIEEE;IEEE Signal Processing Societyen_US
dc.description2011 18th IEEE International Conference on Image Processing, ICIP 2011 -- 11 September 2011 through 14 September 2011 -- Brussels -- 88213en_US
dc.description.abstractLow-level features (also called descriptors) play a central role in content-based image retrieval (CBIR) systems. Features are various types of information extracted from the content and represent some of its characteristics or signatures. However, especially the (low-level) features, which can be extracted automatically usually lack the discrimination power needed for accurate description of the image content and may lead to a poor retrieval performance. In order to efficiently address this problem, in this paper we propose a multidimensional evolutionary feature synthesis technique, which seeks for the optimal linear and non-linear operators so as to synthesize highly discriminative set of features in an optimal dimension. The optimality therein is sought by the multi-dimensional particle swarm optimization method along with the fractional global-best formation technique. Clustering and CBIR experiments where the proposed feature synthesizer is evolved using only the minority of the image database, demonstrate a significant performance improvement and exhibit a major discrimination between the features of different classes. © 2011 IEEE.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings - International Conference on Image Processing, ICIPen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectContent-based image retrievalen_US
dc.subjectEvolutionary feature synthesisen_US
dc.subjectmulti-dimensional particle swarm optimizationen_US
dc.subjectContent based image retrievalen_US
dc.subjectDescriptorsen_US
dc.subjectFeature synthesisen_US
dc.subjectImage contenten_US
dc.subjectImage databaseen_US
dc.subjectLow-level featuresen_US
dc.subjectOptimalityen_US
dc.subjectParticle swarmen_US
dc.subjectParticle swarm optimization methoden_US
dc.subjectPerformance improvementsen_US
dc.subjectRetrieval performanceen_US
dc.subjectContent based retrievalen_US
dc.subjectImage processingen_US
dc.subjectMathematical operatorsen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectSearch enginesen_US
dc.titleMulti-dimensional evolutionary feature synthesis for content-based image retrievalen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ICIP.2011.6116508-
dc.identifier.scopus2-s2.0-84856248686en_US
dc.authorscopusid7801632948-
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.identifier.startpage3645en_US
dc.identifier.endpage3648en_US
dc.identifier.wosWOS:000298962503195en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2638.pdf
  Restricted Access
584.75 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

226
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.