Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3551
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOktar Y.-
dc.contributor.authorTurkan M.-
dc.date.accessioned2023-06-16T15:00:46Z-
dc.date.available2023-06-16T15:00:46Z-
dc.date.issued2020-
dc.identifier.isbn978-1-7281-6395-6-
dc.identifier.issn1522-4880-
dc.identifier.urihttps://doi.org/10.1109/ICIP40778.2020.9191096-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3551-
dc.descriptionThe Institute of Electrical and Electronics Engineers Signal Processing Societyen_US
dc.description2020 IEEE International Conference on Image Processing, ICIP 2020 -- 25 September 2020 through 28 September 2020 -- 165772en_US
dc.description.abstractDictionary learning for sparse representations is generative in nature, hence discriminative modifications are commonly observed for classification problems. Classical dictionary learning bears a fundamental problem of not being capable of distinguishing two different classes lying on the same subspace, that cannot be resolved by any discriminative modification. This paper proposes an evolutionary simplicial learning method as a generative and compact sparse framework that solves the aforementioned problem for classification. Simplicial learning is an adaptation of conventional dictionary learning, in which subspaces designated by dictionary elements take the form of simplices through additional constraints on sparse codes. On top, an evolutionary approach is developed to determine the dimensionality and the number of simplices composing the simplicial. The proposed evolutionary learning is considered within multi-class classification tasks through synthetic and handwritten digit datasets and the superiority of it even as a generative-only approach is demonstrated. Simplicial learning loses its superiority over discriminative methods in high-dimensional real-world cases but can further be modified with discriminative elements to achieve state-of-the-art for classification. © 2020 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.relation.ispartofProceedings - International Conference on Image Processing, ICIPen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectclassificationen_US
dc.subjectdictionary learningen_US
dc.subjectmachine learningen_US
dc.subjectsimplicialen_US
dc.subjectSparse representationsen_US
dc.subjectCharacter recognitionen_US
dc.subjectClassification (of information)en_US
dc.subjectImage processingen_US
dc.subjectDictionary learningen_US
dc.subjectDiscriminative methodsen_US
dc.subjectEvolutionary approachen_US
dc.subjectEvolutionary Learningen_US
dc.subjectHandwritten digiten_US
dc.subjectLearning methodsen_US
dc.subjectMulti-class classificationen_US
dc.subjectSparse representationen_US
dc.subjectLearning systemsen_US
dc.titleClassification Via Simplicial Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ICIP40778.2020.9191096-
dc.identifier.scopus2-s2.0-85098661654en_US
dc.authorscopusid56560191100-
dc.identifier.volume2020-Octoberen_US
dc.identifier.startpage2945en_US
dc.identifier.endpage2949en_US
dc.identifier.wosWOS:000646178503011en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.10. Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2641.pdf
  Restricted Access
143 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

62
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.