Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3554
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | İnce, Türker | - |
dc.contributor.author | Kiranyaz S. | - |
dc.contributor.author | Gabbouj, Moncef | - |
dc.date.accessioned | 2023-06-16T15:00:46Z | - |
dc.date.available | 2023-06-16T15:00:46Z | - |
dc.date.issued | 2010 | - |
dc.identifier.isbn | 9.78077E+12 | - |
dc.identifier.issn | 1051-4651 | - |
dc.identifier.uri | https://doi.org/10.1109/ICPR.2010.1051 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3554 | - |
dc.description | 2010 20th International Conference on Pattern Recognition, ICPR 2010 -- 23 August 2010 through 26 August 2010 -- Istanbul -- 82392 | en_US |
dc.description.abstract | This paper proposes an evolutionary RBF network classifier for polarimetric synthetic aperture radar ( SAR) images. The proposed feature extraction process utilizes the full covariance matrix, the gray level co-occurrence matrix (GLCM) based texture features, and the backscattering power (Span) combined with the H/?/A decomposition, which are projected onto a lower dimensional feature space using principal component analysis. An experimental study is performed using the fully polarimetric San Francisco Bay data set acquired by the NASA/Jet Propulsion Laboratory Airborne SAR (AIRSAR) at L-band to evaluate the performance of the proposed classifier. Classification results (in terms of confusion matrix, overall accuracy and classification map) compared to the Wishart and a recent NN-based classifiers demonstrate the effectiveness of the proposed algorithm. © 2010 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Proceedings - International Conference on Pattern Recognition | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Airborne SAR | en_US |
dc.subject | Classification results | en_US |
dc.subject | Confusion matrices | en_US |
dc.subject | Data sets | en_US |
dc.subject | Experimental studies | en_US |
dc.subject | Feature space | en_US |
dc.subject | Gray level co-occurrence matrix | en_US |
dc.subject | Polarimetric SAR | en_US |
dc.subject | Polarimetric synthetic aperture radars | en_US |
dc.subject | RBF Network | en_US |
dc.subject | San Francisco Bay | en_US |
dc.subject | Texture features | en_US |
dc.subject | Classifiers | en_US |
dc.subject | Covariance matrix | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | Imaging systems | en_US |
dc.subject | Polarimeters | en_US |
dc.subject | Polarographic analysis | en_US |
dc.subject | Radial basis function networks | en_US |
dc.subject | Synthetic aperture radar | en_US |
dc.subject | Principal component analysis | en_US |
dc.title | Classification of polarimetric SAR images using evolutionary RBF networks | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/ICPR.2010.1051 | - |
dc.identifier.scopus | 2-s2.0-78149471731 | en_US |
dc.authorscopusid | 56259806600 | - |
dc.authorscopusid | 7005332419 | - |
dc.identifier.startpage | 4324 | en_US |
dc.identifier.endpage | 4327 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosquality | N/A | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | reserved | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2644.pdf Restricted Access | 493.7 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
3
checked on Nov 20, 2024
Page view(s)
262
checked on Nov 25, 2024
Download(s)
2
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.