Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3554
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.contributor.authorKiranyaz S.-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T15:00:46Z-
dc.date.available2023-06-16T15:00:46Z-
dc.date.issued2010-
dc.identifier.isbn9.78077E+12-
dc.identifier.issn1051-4651-
dc.identifier.urihttps://doi.org/10.1109/ICPR.2010.1051-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3554-
dc.description2010 20th International Conference on Pattern Recognition, ICPR 2010 -- 23 August 2010 through 26 August 2010 -- Istanbul -- 82392en_US
dc.description.abstractThis paper proposes an evolutionary RBF network classifier for polarimetric synthetic aperture radar ( SAR) images. The proposed feature extraction process utilizes the full covariance matrix, the gray level co-occurrence matrix (GLCM) based texture features, and the backscattering power (Span) combined with the H/?/A decomposition, which are projected onto a lower dimensional feature space using principal component analysis. An experimental study is performed using the fully polarimetric San Francisco Bay data set acquired by the NASA/Jet Propulsion Laboratory Airborne SAR (AIRSAR) at L-band to evaluate the performance of the proposed classifier. Classification results (in terms of confusion matrix, overall accuracy and classification map) compared to the Wishart and a recent NN-based classifiers demonstrate the effectiveness of the proposed algorithm. © 2010 IEEE.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings - International Conference on Pattern Recognitionen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAirborne SARen_US
dc.subjectClassification resultsen_US
dc.subjectConfusion matricesen_US
dc.subjectData setsen_US
dc.subjectExperimental studiesen_US
dc.subjectFeature spaceen_US
dc.subjectGray level co-occurrence matrixen_US
dc.subjectPolarimetric SARen_US
dc.subjectPolarimetric synthetic aperture radarsen_US
dc.subjectRBF Networken_US
dc.subjectSan Francisco Bayen_US
dc.subjectTexture featuresen_US
dc.subjectClassifiersen_US
dc.subjectCovariance matrixen_US
dc.subjectFeature extractionen_US
dc.subjectImaging systemsen_US
dc.subjectPolarimetersen_US
dc.subjectPolarographic analysisen_US
dc.subjectRadial basis function networksen_US
dc.subjectSynthetic aperture radaren_US
dc.subjectPrincipal component analysisen_US
dc.titleClassification of polarimetric SAR images using evolutionary RBF networksen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ICPR.2010.1051-
dc.identifier.scopus2-s2.0-78149471731en_US
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.identifier.startpage4324en_US
dc.identifier.endpage4327en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2644.pdf
  Restricted Access
493.7 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

Page view(s)

262
checked on Nov 25, 2024

Download(s)

2
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.