Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3559
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEren L.-
dc.contributor.authorDevecioglu O.C.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorAskar M.-
dc.date.accessioned2023-06-16T15:00:47Z-
dc.date.available2023-06-16T15:00:47Z-
dc.date.issued2022-
dc.identifier.isbn9.78167E+12-
dc.identifier.urihttps://doi.org/10.1109/IECON49645.2022.9968348-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3559-
dc.description48th Annual Conference of the IEEE Industrial Electronics Society, IECON 2022 -- 17 October 2022 through 20 October 2022 -- 184962en_US
dc.description.abstractRecently, machine learning techniques have been increasingly applied to the detection of both mechanical and electrical faults in induction motors. Broken rotor bars are one of the most common fault types that seriously affect the efficiency and lifetime of induction motors. In this study, compact 1-D self-organized operational neural networks (Self-ONNs) are applied to improve the detection and classification of broken rotor bars in induction motors. 1-D convolutional neural networks (CNNs) are a special case of Self-ONNs and they are usually preferred to traditional fault diagnosis systems with separately designed feature extraction and classification blocks as they provide cost-effective and practical hardware implementation. The proposed system improves the detection and classification performance of 1-D CNNs while still providing similar advantages and preserving real-time computational ability. © 2022 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.relation.ispartofIECON Proceedings (Industrial Electronics Conference)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBroken rotor bar detectionen_US
dc.subjectinduction motorsen_US
dc.subjectoperational neural networksen_US
dc.subjectComputer aided diagnosisen_US
dc.subjectConvolutional neural networksen_US
dc.subjectCost effectivenessen_US
dc.subjectFault detectionen_US
dc.subjectLearning systemsen_US
dc.subjectBar detectionen_US
dc.subjectBroken rotor baren_US
dc.subjectBroken rotor bar detectionen_US
dc.subjectConvolutional neural networken_US
dc.subjectInductions motorsen_US
dc.subjectMachine learning techniquesen_US
dc.subjectMechanical faultsen_US
dc.subjectNeural-networksen_US
dc.subjectOperational neural networken_US
dc.subjectSelf-organiseden_US
dc.subjectInduction motorsen_US
dc.titleImproved Detection of Broken Rotor Bars by 1-D Self-ONNsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/IECON49645.2022.9968348-
dc.identifier.scopus2-s2.0-85143895948en_US
dc.authorscopusid6603027663-
dc.authorscopusid56259806600-
dc.authorscopusid7003498558-
dc.identifier.volume2022-Octoberen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2649.pdf
  Restricted Access
1.66 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

70
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.