Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3560
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.contributor.authorKilickaya S.-
dc.contributor.authorEren L.-
dc.contributor.authorDevecioglu O.C.-
dc.contributor.authorKiranyaz S.-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T15:00:47Z-
dc.date.available2023-06-16T15:00:47Z-
dc.date.issued2022-
dc.identifier.isbn9.78167E+12-
dc.identifier.urihttps://doi.org/10.1109/IECON49645.2022.9968754-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3560-
dc.description48th Annual Conference of the IEEE Industrial Electronics Society, IECON 2022 -- 17 October 2022 through 20 October 2022 -- 184962en_US
dc.description.abstractApplication of domain adaptation techniques to predictive maintenance of modern electric rotating machinery (RM) has significant potential with the goal of transferring or adaptation of a fault diagnosis model developed for one machine to be generalized on new machines and/or new working conditions. The generalized nonlinear extension of conventional convolutional neural networks (CNNs), the self-organized operational neural networks (Self-ONNs) are known to enhance the learning capability of CNN by introducing non-linear neuron models and further heterogeneity in the network configuration. In this study, first the state-of-the-art 1D CNNs and Self-ONNs are tested for cross-domain performance. Then, we propose to utilize Self-ONNs as feature extractor in the well-known domain-adversarial neural networks (DANN) to enhance its domain adaptation performance. Experimental results over the benchmark Case Western Reserve University (CWRU) real vibration data set for bearing fault diagnosis across different load domains demonstrate the effectiveness and feasibility of the proposed domain adaptation approach with similar computational complexity. © 2022 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.relation.ispartofIECON Proceedings (Industrial Electronics Conference)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBearing Fault Diagnosisen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectDomain Adaptationen_US
dc.subjectMachine Health Monitoringen_US
dc.subjectOperational Neural Networksen_US
dc.subjectBearings (machine parts)en_US
dc.subjectConvolutionen_US
dc.subjectElectric loadsen_US
dc.subjectFailure analysisen_US
dc.subjectFault detectionen_US
dc.subjectAdaptation techniquesen_US
dc.subjectBearing fault diagnosisen_US
dc.subjectConvolutional neural networken_US
dc.subjectDomain adaptationen_US
dc.subjectMachine health monitoringen_US
dc.subjectNeural-networksen_US
dc.subjectOperational neural networken_US
dc.subjectPerformanceen_US
dc.subjectPredictive maintenanceen_US
dc.subjectSelf-organiseden_US
dc.subjectConvolutional neural networksen_US
dc.titleImproved Domain Adaptation Approach for Bearing Fault Diagnosisen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/IECON49645.2022.9968754-
dc.identifier.scopus2-s2.0-85143911654en_US
local.message.claim2024-06-16T18:25:59.398+0300*
local.message.claim|rp00060*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.authorscopusid56259806600-
dc.authorscopusid6603027663-
dc.authorscopusid57215653815-
dc.authorscopusid7801632948-
dc.authorscopusid7005332419-
dc.identifier.volume2022-Octoberen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2651.pdf
  Restricted Access
1.36 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

Page view(s)

262
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.