Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3565
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz S.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T15:00:48Z-
dc.date.available2023-06-16T15:00:48Z-
dc.date.issued2009-
dc.identifier.isbn9.78142E+12-
dc.identifier.urihttps://doi.org/10.1109/IIT.2009.5413787-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3565-
dc.description2009 International Conference on Innovations in Information Technology, IIT '09 -- 15 December 2009 through 17 December 2009 -- Al-Ain -- 80336en_US
dc.description.abstractParticle Swarm Optimization (PSO) is attracting an ever-growing attention and more than ever it has found many application areas for many challenging optimization problems. In this paper, we draw the focus on a major drawback of the PSO algorithm: the poor gbest update. This can be a severe problem, which causes pre-mature convergence to local optima since gbest as the common term in the update equation of all particles, is the primary guide of the swarm. Therefore, we basically seek a solutionfor the social problem in PSO, i.e. "Who will guide the guide?" which resembles the rhetoric question posed by Plato in his famous work on government: "Who will guard the guards?" (Quis custodiet ipsos custodes?). Stochastic approximation (SA) is purposefully adapted into two approaches to guide (or drive) the gbest particle (with simultaneous perturbation) towards the right direction with the gradient estimate of the underlying surface (or function) whilst avoiding local traps due to its stochastic nature. Wepurposefully used simultaneous perturbation SA (SPSA) for its low cost and since SPSA is applied only to the gbest (not the entire swarm), both approaches have thus a negligible overhead cost over the entire PSO process. Yet we have shown over a wide range ofnon-linear functions that both approaches significantly improve the performance of PSO especially ifthe parameters of SPSA suits to the problem in hand. ©2009 IEEE.en_US
dc.language.isoenen_US
dc.relation.ispartof2009 International Conference on Innovations in Information Technology, IIT '09en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectApplication areaen_US
dc.subjectGradient estimatesen_US
dc.subjectLinear functionsen_US
dc.subjectLocal optimaen_US
dc.subjectLocal trapsen_US
dc.subjectLow costsen_US
dc.subjectOptimization problemsen_US
dc.subjectOverhead costsen_US
dc.subjectPSO algorithmsen_US
dc.subjectSimultaneous perturbationen_US
dc.subjectSocial problemsen_US
dc.subjectStochastic approximationsen_US
dc.subjectStochastic natureen_US
dc.subjectUnderlying surfaceen_US
dc.subjectApproximation theoryen_US
dc.subjectInformation technologyen_US
dc.subjectInnovationen_US
dc.subjectStochastic systemsen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.titleStochastic approximation driven particle swarm optimizationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/IIT.2009.5413787-
dc.identifier.scopus2-s2.0-77952512400en_US
dc.authorscopusid7801632948-
dc.authorscopusid7005332419-
dc.identifier.startpage40en_US
dc.identifier.endpage44en_US
dc.identifier.wosWOS:000283476800008en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2656.pdf
  Restricted Access
6.46 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

234
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.