Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3566
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz S.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorIosifidis A.-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T15:00:48Z-
dc.date.available2023-06-16T15:00:48Z-
dc.date.issued2017-
dc.identifier.isbn9.78151E+12-
dc.identifier.urihttps://doi.org/10.1109/IJCNN.2017.7966157-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3566-
dc.descriptionBrain-Mind Institute (BMI);Budapest Semester in Cognitive Science (BSCS);Intelen_US
dc.description2017 International Joint Conference on Neural Networks, IJCNN 2017 -- 14 May 2017 through 19 May 2017 -- 128847en_US
dc.description.abstractTraditional Artificial Neural Networks (ANNs) such as Multi-Layer Perceptrons (MLPs) and Radial Basis Functions (RBFs) were designed to simulate biological neural networks; however, they are based only loosely on biology and only provide a crude model. This in turn yields well-known limitations and drawbacks on the performance and robustness. In this paper we shall address them by introducing a novel feed-forward ANN model, Generalized Operational Perceptrons (GOPs) that consist of neurons with distinct (non-)linear operators to achieve a generalized model of the biological neurons and ultimately a superior diversity. We modified the conventional back-propagation (BP) to train GOPs and furthermore, proposed Progressive Operational Perceptrons (POPs) to achieve self-organized and depth-adaptive GOPs according to the learning problem. The most crucial property of the POPs is their ability to simultaneously search for the optimal operator set and train each layer individually. The final POP is, therefore, formed layer by layer and this ability enables POPs with minimal network depth to attack the most challenging learning problems that cannot be learned by conventional ANNs even with a deeper and significantly complex configuration. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings of the International Joint Conference on Neural Networksen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBackpropagationen_US
dc.subjectCyberneticsen_US
dc.subjectMathematical operatorsen_US
dc.subjectRadial basis function networksen_US
dc.subjectBiological neural networksen_US
dc.subjectBiological neuronen_US
dc.subjectComplex configurationen_US
dc.subjectGeneralized modelsen_US
dc.subjectMinimal networksen_US
dc.subjectMulti-layer perceptrons (MLPs)en_US
dc.subjectOptimal operatorsen_US
dc.subjectRadial basis functionsen_US
dc.subjectNeural networksen_US
dc.titleGeneralized model of biological neural networks: Progressive operational perceptronsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/IJCNN.2017.7966157-
dc.identifier.scopus2-s2.0-85031016878en_US
dc.authorscopusid7801632948-
dc.authorscopusid36720841400-
dc.authorscopusid7005332419-
dc.identifier.volume2017-Mayen_US
dc.identifier.startpage2477en_US
dc.identifier.endpage2485en_US
dc.identifier.wosWOS:000426968702095en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2657.pdf
  Restricted Access
740.63 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

13
checked on Nov 20, 2024

Page view(s)

218
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.