Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3567
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYeganli F.-
dc.contributor.authorSingh K.-
dc.date.accessioned2023-06-16T15:00:48Z-
dc.date.available2023-06-16T15:00:48Z-
dc.date.issued2019-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/INISTA.2019.8778289-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3567-
dc.descriptionBulgarian National Science Fund;Bulgarian Sectionen_US
dc.description2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications, INISTA 2019 -- 3 July 2019 through 5 July 2019 -- 150190en_US
dc.description.abstractIn this paper, a novel approach is employed for fingerprint image super-resolution based on sparse representation over a set of coupled low and high-resolution dictionary pairs. The primary step of fingerprint super-resolution involves learning a pair of coupled low-and high-resolution sub-dictionaries for each cluster of patches sampled from training set of fingerprint images. The clusters are formulated based on patch sharpness and the dominant phase angle via the magnitude and phase of the gradient operator for each image patch. In the reconstruction stage, for the low-resolution patch the most appropriate dictionary pair is selected, and the sparse coding coefficients are calculated with respect to the low-resolution dictionary. The equality assumption of the sparse representation of the low and high-resolution patches is the link between the low and high-resolution features space. For the reconstruction of high resolution patch, the sparse coefficients calculated for low-resolution patch are directly multiplied with corresponding high-resolution dictionary. The conducted experiments over fingerprint images show that the algorithm is competitive with the state-of-art super-resolution algorithms. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE International Symposium on INnovations in Intelligent SysTems and Applications, INISTA 2019 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcoupled dictionaryen_US
dc.subjectdictionary learningen_US
dc.subjectfingerprint imageen_US
dc.subjectgradient phase angleen_US
dc.subjectImage Super-resolutionen_US
dc.subjectsharpness measureen_US
dc.subjectsparse representationen_US
dc.subjectIntelligent systemsen_US
dc.subjectDictionary learningen_US
dc.subjectFingerprint imagesen_US
dc.subjectImage super resolutionsen_US
dc.subjectPhase anglesen_US
dc.subjectSharpness measuresen_US
dc.subjectSparse representationen_US
dc.subjectOptical resolving poweren_US
dc.titleFinger-Print Image Super-Resolution via Gradient Operator based Clustered Coupled Sparse Dictionariesen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/INISTA.2019.8778289-
dc.identifier.scopus2-s2.0-85070755278en_US
dc.authorscopusid56247299800-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2658.pdf
  Restricted Access
3.07 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

46
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.