Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3569
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz S.-
dc.contributor.authorUhlmann S.-
dc.contributor.authorPulkkinen J.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj M.-
dc.date.accessioned2023-06-16T15:00:49Z-
dc.date.available2023-06-16T15:00:49Z-
dc.date.issued2011-
dc.identifier.isbn9.78146E+12-
dc.identifier.urihttps://doi.org/10.1109/INNOVATIONS.2011.5893823-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3569-
dc.description2011 International Conference on Innovations in Information Technology, IIT 2011 -- 25 April 2011 through 27 April 2011 -- Abu Dhabi -- 85400en_US
dc.description.abstractIn this paper, we propose an incremental evolution scheme within collective network of (evolutionary) binary classifiers (CNBC) framework to address the problem of incremental learning and to achieve a high retrieval performance for content-based image retrieval (CBIR). The proposed CNBC framework can still function even though the training (ground truth) data may not be entirely present from the beginning and thus the system can only be evolved incrementally. The CNBC framework basically adopts a "Divide and Conquer" type approach by allocating several networks of binary classifiers (NBCs) to discriminate each class and performs evolutionary search to find the optimal binary classifier (BC) in each NBC. This design further allows such scalability that the CNBC can dynamically adapt its internal topology to new features and classes with minimal effort. Both visual and numerical performance evaluations of the proposed framework over benchmark image databases demonstrate its efficiency and accuracy for scalable CBIR and classification. © 2011 IEEE.en_US
dc.language.isoenen_US
dc.relation.ispartof2011 International Conference on Innovations in Information Technology, IIT 2011en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBinary classifiersen_US
dc.subjectContent-baseden_US
dc.subjectContent-Based Image Retrievalen_US
dc.subjectDivide and conqueren_US
dc.subjectEvolutionary searchen_US
dc.subjectGround truthen_US
dc.subjectImage databaseen_US
dc.subjectIncremental learningen_US
dc.subjectIts efficienciesen_US
dc.subjectPerformance evaluationen_US
dc.subjectRetrieval performanceen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectInnovationen_US
dc.subjectInformation technologyen_US
dc.titleIncremental evolution of collective network of binary classifier for content-based image classification and retrievalen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/INNOVATIONS.2011.5893823-
dc.identifier.scopus2-s2.0-79959970952en_US
dc.authorscopusid7801632948-
dc.authorscopusid26665019900-
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.identifier.startpage232en_US
dc.identifier.endpage237en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2660.pdf
  Restricted Access
816.37 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

84
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.