Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3571
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErdil E.-
dc.contributor.authorOzgurargunsah A.-
dc.contributor.authorTasdizen T.-
dc.contributor.authorUnay D.-
dc.contributor.authorCetin M.-
dc.date.accessioned2023-06-16T15:00:49Z-
dc.date.available2023-06-16T15:00:49Z-
dc.date.issued2019-
dc.identifier.isbn9.78154E+12-
dc.identifier.issn1945-7928-
dc.identifier.urihttps://doi.org/10.1109/ISBI.2019.8759273-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3571-
dc.descriptionet al.;IEEE Engineering in Medicine and Biology Society (EMB);IEEE Signal Processing Society;The Institute of Electrical and Electronics Engineers (IEEE);UAI;United Imaging Intelligenceen_US
dc.description16th IEEE International Symposium on Biomedical Imaging, ISBI 2019 -- 8 April 2019 through 11 April 2019 -- 149553en_US
dc.description.abstractData driven segmentation is an important initial step of shape prior-based segmentation methods since it is assumed that the data term brings a curve to a plausible level so that shape and data terms can then work together to produce better segmentations. When purely data driven segmentation produces poor results, the final segmentation is generally affected adversely. One challenge faced by many existing data terms is due to the fact that they consider only pixel intensities to decide whether to assign a pixel to the foreground or to the background region. When the distributions of the foreground and back-ground pixel intensities have significant overlap, such data terms become ineffective, as they produce uncertain results for many pixels in a test image. In such cases, using prior information about the spatial context of the object to be segmented together with the data term can bring a curve to a plausible stage, which would then serve as a good initial point to launch shape-based segmentation. In this paper, we propose a new segmentation approach that combines nonparametric context priors with a learned-intensity-based data term and nonparametric shape priors. We perform experiments for dendritic spine segmentation in both 2 D and 3 D 2-photon microscopy images. The experimental results demonstrate that using spatial context priors leads to significant improvements. © 2019 IEEE.en_US
dc.description.sponsorship113E603; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAKen_US
dc.description.sponsorshipThis work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 113E603.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.relation.ispartofProceedings - International Symposium on Biomedical Imagingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject2-photon microscopyen_US
dc.subjectNonparametric shape priorsen_US
dc.subjectSpatial context priorsen_US
dc.subjectSpine segmentationen_US
dc.subjectMedical imagingen_US
dc.subjectPixelsen_US
dc.subjectBackground regionen_US
dc.subjectMicroscopy imagesen_US
dc.subjectPixel intensitiesen_US
dc.subjectPrior informationen_US
dc.subjectSegmentation methodsen_US
dc.subjectShape priorsen_US
dc.subjectShape-based segmentationsen_US
dc.subjectSpatial contexten_US
dc.subjectImage segmentationen_US
dc.titleCombining nonparametric spatial context priors with nonparametric shape priors for dendritic spine segmentation in 2-photon microscopy imagesen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ISBI.2019.8759273-
dc.identifier.scopus2-s2.0-85073894708en_US
dc.authorscopusid36489496900-
dc.authorscopusid6602852406-
dc.authorscopusid55922238900-
dc.authorscopusid35561229800-
dc.identifier.volume2019-Aprilen_US
dc.identifier.startpage204en_US
dc.identifier.endpage207en_US
dc.identifier.wosWOS:000485040000048en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2663.pdf146.45 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

60
checked on Nov 18, 2024

Download(s)

14
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.