Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3577
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUhlmann S.-
dc.contributor.authorKiranyaz S.-
dc.contributor.authorGabbouj, Moncef-
dc.contributor.authorİnce, Türker-
dc.date.accessioned2023-06-16T15:00:50Z-
dc.date.available2023-06-16T15:00:50Z-
dc.date.issued2011-
dc.identifier.isbn9.78142E+12-
dc.identifier.urihttps://doi.org/10.1109/JURSE.2011.5764765-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3577-
dc.descriptionInst. Electr. Electron. Eng., Geosci.;Remote Sens. Soc. (IEEE GRSS);Int. Soc. Photogramm. Remote Sens. (ISPRS)en_US
dc.descriptionIEEE GRSS and ISPRS Joint Urban Remote Sensing Event, JURSE 2011 -- 11 April 2011 through 13 April 2011 -- Munich -- 84985en_US
dc.description.abstractIn this paper, we propose the application of collective network of (evolutionary) binary classifiers (CNBC) to address the problems of feature/class scalability and classifier evolution, to achieve a high classification performance over full polarimetric SAR images even though the training (ground truth) data may not be entirely accurate. The CNBC basically adopts a "Divide and Conquer" type approach by allocating an individual network of binary classifiers (NBCs) to discriminate each SAR image class and performing evolutionary search to find the optimal binary classifier (BC) in each NBC. Such design further allows dynamic class and SAR image feature scalability in such a way that the CNBC can gradually adapt itself to new features and classes with minimal effort. Experiments demonstrate the classification accuracy and efficiency of the proposed system over the fully polarimetric AIRSAR San Francisco Bay data set. © 2011 IEEE.en_US
dc.language.isoenen_US
dc.relation.ispartof2011 Joint Urban Remote Sensing Event, JURSE 2011 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBinary classifiersen_US
dc.subjectClassification accuracy and efficiencyen_US
dc.subjectClassification performanceen_US
dc.subjectData setsen_US
dc.subjectDivide and conqueren_US
dc.subjectEvolutionary searchen_US
dc.subjectGround truthen_US
dc.subjectIndividual networken_US
dc.subjectPolarimetric SARen_US
dc.subjectSan Francisco Bayen_US
dc.subjectSAR Imagesen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectPolarimetersen_US
dc.subjectPolarographic analysisen_US
dc.subjectRemote sensingen_US
dc.subjectScalabilityen_US
dc.subjectClassification (of information)en_US
dc.titlePolarimetric SAR images classification using collective network of binary classifiersen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/JURSE.2011.5764765-
dc.identifier.scopus2-s2.0-79957664899en_US
dc.authorscopusid35106079900-
dc.authorscopusid7005332419-
dc.authorscopusid56259806600-
dc.identifier.startpage245en_US
dc.identifier.endpage248en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2668.pdf
  Restricted Access
1.5 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 20, 2024

Page view(s)

242
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.