Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3579
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhishali M.-
dc.contributor.authorKiranyaz S.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T15:00:50Z-
dc.date.available2023-06-16T15:00:50Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/M2GARSS47143.2020.9105312-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3579-
dc.descriptionThe Institute of Electrical and Electronics Engineers Geoscience and Remote Sensing Society (IEEE GRSS)en_US
dc.description2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2020 -- 9 March 2020 through 11 March 2020 -- 160621en_US
dc.description.abstractIn this work, we propose a novel classification approach based on dual-band one-dimensional Convolutional Neural Networks (1D-CNNs) for classification of multifrequency polarimetric SAR (PolSAR) data. The proposed approach can jointly learn from C- and L-band data and improve the single band classification accuracy. To the best of our knowledge, this is the first study that introduces 1D-CNNs to land use/land cover classification domain using PolSAR data. The proposed approach aims to achieve maximum classification accuracy by one-time training over multiple frequency bands with limited labelled data. Moreover, the proposed dual-band 1D-CNN approach yields a superior computational efficiency compared to the deep 2D-CNN based approaches. The performed experiments using AIRSAR PolSAR image over San Diego region at C- and L-bands have shown that the proposed approach is able to simultaneously learn from the C- and L-band SAR data and achieves an elegant classification performance with minimal complexity. © 2020 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2020 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject1D Convolutional Neural Networksen_US
dc.subjectland use/land cover classificationen_US
dc.subjectmultifrequency classificationen_US
dc.subjectPolarimetric Synthetic Aperture Radar (PolSAR)en_US
dc.subjectComputational efficiencyen_US
dc.subjectConvolutionen_US
dc.subjectConvolutional neural networksen_US
dc.subjectGeologyen_US
dc.subjectImage classificationen_US
dc.subjectLand useen_US
dc.subjectOne dimensionalen_US
dc.subjectRadar imagingen_US
dc.subjectRemote sensingen_US
dc.subjectClassification accuracyen_US
dc.subjectClassification approachen_US
dc.subjectClassification performanceen_US
dc.subjectLand use/land coveren_US
dc.subjectMulti frequencyen_US
dc.subjectMultiple frequencyen_US
dc.subjectPolarimetric SARen_US
dc.subjectSingle banden_US
dc.subjectClassification (of information)en_US
dc.titleMultifrequency Polsar Image Classification Using Dual-Band 1D Convolutional Neural Networksen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/M2GARSS47143.2020.9105312-
dc.identifier.scopus2-s2.0-85086740246en_US
dc.authorscopusid57201466019-
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.identifier.startpage73en_US
dc.identifier.endpage76en_US
dc.identifier.wosWOS:000604612500019en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2670.pdf
  Restricted Access
586.91 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 20, 2024

Page view(s)

232
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.