Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3579
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ahishali M. | - |
dc.contributor.author | Kiranyaz S. | - |
dc.contributor.author | İnce, Türker | - |
dc.contributor.author | Gabbouj, Moncef | - |
dc.date.accessioned | 2023-06-16T15:00:50Z | - |
dc.date.available | 2023-06-16T15:00:50Z | - |
dc.date.issued | 2020 | - |
dc.identifier.isbn | 9.78173E+12 | - |
dc.identifier.uri | https://doi.org/10.1109/M2GARSS47143.2020.9105312 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3579 | - |
dc.description | The Institute of Electrical and Electronics Engineers Geoscience and Remote Sensing Society (IEEE GRSS) | en_US |
dc.description | 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2020 -- 9 March 2020 through 11 March 2020 -- 160621 | en_US |
dc.description.abstract | In this work, we propose a novel classification approach based on dual-band one-dimensional Convolutional Neural Networks (1D-CNNs) for classification of multifrequency polarimetric SAR (PolSAR) data. The proposed approach can jointly learn from C- and L-band data and improve the single band classification accuracy. To the best of our knowledge, this is the first study that introduces 1D-CNNs to land use/land cover classification domain using PolSAR data. The proposed approach aims to achieve maximum classification accuracy by one-time training over multiple frequency bands with limited labelled data. Moreover, the proposed dual-band 1D-CNN approach yields a superior computational efficiency compared to the deep 2D-CNN based approaches. The performed experiments using AIRSAR PolSAR image over San Diego region at C- and L-bands have shown that the proposed approach is able to simultaneously learn from the C- and L-band SAR data and achieves an elegant classification performance with minimal complexity. © 2020 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2020 - Proceedings | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | 1D Convolutional Neural Networks | en_US |
dc.subject | land use/land cover classification | en_US |
dc.subject | multifrequency classification | en_US |
dc.subject | Polarimetric Synthetic Aperture Radar (PolSAR) | en_US |
dc.subject | Computational efficiency | en_US |
dc.subject | Convolution | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Geology | en_US |
dc.subject | Image classification | en_US |
dc.subject | Land use | en_US |
dc.subject | One dimensional | en_US |
dc.subject | Radar imaging | en_US |
dc.subject | Remote sensing | en_US |
dc.subject | Classification accuracy | en_US |
dc.subject | Classification approach | en_US |
dc.subject | Classification performance | en_US |
dc.subject | Land use/land cover | en_US |
dc.subject | Multi frequency | en_US |
dc.subject | Multiple frequency | en_US |
dc.subject | Polarimetric SAR | en_US |
dc.subject | Single band | en_US |
dc.subject | Classification (of information) | en_US |
dc.title | Multifrequency Polsar Image Classification Using Dual-Band 1D Convolutional Neural Networks | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/M2GARSS47143.2020.9105312 | - |
dc.identifier.scopus | 2-s2.0-85086740246 | en_US |
dc.authorscopusid | 57201466019 | - |
dc.authorscopusid | 56259806600 | - |
dc.authorscopusid | 7005332419 | - |
dc.identifier.startpage | 73 | en_US |
dc.identifier.endpage | 76 | en_US |
dc.identifier.wos | WOS:000604612500019 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2670.pdf Restricted Access | 586.91 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
5
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
4
checked on Nov 20, 2024
Page view(s)
232
checked on Nov 18, 2024
Download(s)
2
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.