Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3594
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAslan S.-
dc.contributor.authorTunalı, Turhan-
dc.date.accessioned2023-06-16T15:00:53Z-
dc.date.available2023-06-16T15:00:53Z-
dc.date.issued2013-
dc.identifier.isbn9.78147E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU.2013.6531223-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3594-
dc.description2013 21st Signal Processing and Communications Applications Conference, SIU 2013 -- 24 April 2013 through 26 April 2013 -- Haspolat -- 98109en_US
dc.description.abstractThis paper examines the performance of Hidden Markov Tree model based weights in reconstruction quality for an existing task-Aware compressive video coding system which aims object detection specifically. The existing system utilizes weights in reconstruction which are computed by tracking of the foreground object. The proposed system acquires similar average PSNR with the existing one which reported some improvement compared to the conventional unweighted reconstruction at low sampling rates. Furthermore, it is a little bit better than the existing system at higher sampling rates. It can be inferred from this study that Bayesian approaches that take account structural dependencies between transformation coefficients has the potential of improving reconstruction quality for such a compressive video coding system with object detection task. © 2013 IEEE.en_US
dc.language.isotren_US
dc.relation.ispartof2013 21st Signal Processing and Communications Applications Conference, SIU 2013en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCompressed video codingen_US
dc.subjectCompressive sensingen_US
dc.subjectHidden markov tree modelen_US
dc.subjectObject detectionen_US
dc.subjectSurveillance videoen_US
dc.subjectWeighted reconstructionen_US
dc.subjectCompressed videoen_US
dc.subjectCompressive sensingen_US
dc.subjectHidden Markov tree modelen_US
dc.subjectObject Detectionen_US
dc.subjectSurveillance videoen_US
dc.subjectBayesian networksen_US
dc.subjectObject recognitionen_US
dc.subjectSecurity systemsen_US
dc.subjectSignal encodingen_US
dc.subjectVideo signal processingen_US
dc.subjectHidden Markov modelsen_US
dc.titleJoint compressive video coding and analysis with hidden markov model based weighted reconstructionen_US
dc.title.alternativeSakli markof model tabanli a?irlikli geriçatilma ile ortak sikiştirmali video kodlama ve analizien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU.2013.6531223-
dc.identifier.scopus2-s2.0-84880894685en_US
dc.authorscopusid36658064200-
dc.identifier.wosWOS:000325005300064en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextreserved-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
crisitem.author.dept05.05. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2682.pdf
  Restricted Access
282.88 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

66
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.