Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3596
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.contributor.authorVuruşkan A.-
dc.contributor.authorBulgun E.-
dc.contributor.authorGüzeliş C.-
dc.date.accessioned2023-06-16T15:00:53Z-
dc.date.available2023-06-16T15:00:53Z-
dc.date.issued2013-
dc.identifier.isbn9.78147E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU.2013.6531426-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3596-
dc.description2013 21st Signal Processing and Communications Applications Conference, SIU 2013 -- 24 April 2013 through 26 April 2013 -- Haspolat -- 98109en_US
dc.description.abstractIn this study, we present the development of an intelligent system solution for fashion style selection for various female body shapes. The proposed intelligent system combines binary genetic algorithm (GA) or binary version of the particle swarm optimization (PSO) with PSO-trained artificial neural network. The former is used to search the solution space for the optimal design parameters corresponding to a best fit for the desired target, and the task of the latter is to evaluate fitness (goodness) of each evolved new fashion style. With the goal of creating natural aesthetic relationship between the shape of the body and the shape of the garment for fashion styling, combinations of upper body related and lower body related garment pieces together with detailed attribute categories were created as a knowledge base. The encouraging results of preliminary experiments demonstrate the feasibility of applying intelligent systems to fashion styling. © 2013 IEEE.en_US
dc.language.isotren_US
dc.relation.ispartof2013 21st Signal Processing and Communications Applications Conference, SIU 2013en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFemale body shapesen_US
dc.subjectGarment designen_US
dc.subjectGenetic algorithmen_US
dc.subjectIntelligent systemsen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectBinary genetic algorithmen_US
dc.subjectBody shapesen_US
dc.subjectFashion stylesen_US
dc.subjectGarment designen_US
dc.subjectKnowledge baseen_US
dc.subjectOptimal design parametersen_US
dc.subjectSolution spaceen_US
dc.subjectUpper bodiesen_US
dc.subjectGenetic algorithmsen_US
dc.subjectKnowledge based systemsen_US
dc.subjectNeural networksen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectSignal processingen_US
dc.subjectIntelligent systemsen_US
dc.titleApplication of evolutionary algorithms to garment designen_US
dc.title.alternativeEvrimsel algoritmalarin giysi tasarimina uygulanmasien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU.2013.6531426-
dc.identifier.scopus2-s2.0-84880891905en_US
dc.authorscopusid56259806600-
dc.authorscopusid12793953400-
dc.authorscopusid55937768800-
dc.identifier.wosWOS:000325005300266en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept06.02. Fashion and Textile Design-
crisitem.author.dept06.02. Fashion and Textile Design-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2684.pdf
  Restricted Access
507.05 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

230
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.