Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3598
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhani M.U.-
dc.contributor.authorKanik S.D.-
dc.contributor.authorArgunşah A.O.-
dc.contributor.authorIsraely I.-
dc.contributor.authorÜnay D.-
dc.contributor.authorÇetin M.-
dc.date.accessioned2023-06-16T15:00:54Z-
dc.date.available2023-06-16T15:00:54Z-
dc.date.issued2016-
dc.identifier.isbn9.78151E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU.2016.7495955-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3598-
dc.description24th Signal Processing and Communication Application Conference, SIU 2016 -- 16 May 2016 through 19 May 2016 -- 122605en_US
dc.description.abstractDendritic spines, membranous protrusions of neurons, are one of the few prominent characteristics of neurons. Their shapes change with variations in neuron activity. Spine shape analysis plays a significant role in inferring the inherent relationship between neuron activity and spine morphology variations. First step towards integrating rich shape information is to classify spines into four shape classes reported in literature. This analysis is currently performed manually due to the deficiency of fully automated and reliable tools, which is a time intensive task with subjective results. Availability of automated analysis tools can expedite the analysis process. In this paper, we compare ?1-norm-based sparse representation based classification approach to the least squares method, and the ?2-norm method for dendritic spine classification as well as to a morphological feature-based approach. On a dataset of 242 automatically segmented stubby and mushroom spines, ?1 representation with non-negativity constraint resulted in classification accuracy of 88.02%, which is the highest performance among the techniques considered here. © 2016 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectDendritic Spinesen_US
dc.subjectleast-squaresen_US
dc.subjectNeuroimagingen_US
dc.subjectSparse Representationen_US
dc.subject?1en_US
dc.subject?2en_US
dc.subjectClassification (of information)en_US
dc.subjectLeast squares approximationsen_US
dc.subjectNeuroimagingen_US
dc.subjectSignal processingen_US
dc.subjectClassification accuracyen_US
dc.subjectDendritic spineen_US
dc.subjectLeast Squareen_US
dc.subjectLeast squares methodsen_US
dc.subjectMorphological featuresen_US
dc.subjectNon-negativity constraintsen_US
dc.subjectSparse representationen_US
dc.subjectSparse representation based classificationsen_US
dc.subjectNeuronsen_US
dc.titleDendritic spine classification based on two-photon microscopic images using sparse representationen_US
dc.title.alternativeIki Foton Mikroskobik Görüntülerdeki Dentritik Dikenlerin Seyrek Temsil Kullanarak Siniflandirilmasien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU.2016.7495955-
dc.identifier.scopus2-s2.0-84982793002en_US
dc.authorscopusid43561269300-
dc.authorscopusid24723512300-
dc.authorscopusid24511960600-
dc.authorscopusid55922238900-
dc.authorscopusid35561229800-
dc.identifier.startpage1177en_US
dc.identifier.endpage1180en_US
dc.identifier.wosWOS:000391250900271en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2685.pdf
  Restricted Access
287.88 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

64
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.