Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3599
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumova S.-
dc.contributor.authorKaraoglan B.-
dc.contributor.authorKisla T.-
dc.date.accessioned2023-06-16T15:00:54Z-
dc.date.available2023-06-16T15:00:54Z-
dc.date.issued2016-
dc.identifier.isbn9.78151E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU.2016.7496009-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3599-
dc.description24th Signal Processing and Communication Application Conference, SIU 2016 -- 16 May 2016 through 19 May 2016 -- 122605en_US
dc.description.abstractIdentification of paraphrase sentence pairs becomes increasingly prominent in natural language processing area (e.g plagiarism detection, summarization, machine translation). In this study, it is proposed to employ information gain measure in determining the value-ranges of the paraphrase classification features on the renown paraphrase corpus of Microsoft Research (MSRP). The classification performances of value-ranges that are determined by information gain measure and an alternative heuristic method are compared by the use of Bayes classifier. The results show that the proposed method performs better than the heuristic method. © 2016 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBayesian classificationen_US
dc.subjectfeaturesen_US
dc.subjectinformation gainen_US
dc.subjectparaphraseen_US
dc.subjectparaphrase sentence pairsen_US
dc.subjectHeuristic methodsen_US
dc.subjectNatural language processing systemsen_US
dc.subjectSignal detectionen_US
dc.subjectSignal processingen_US
dc.subjectBayesian classificationen_US
dc.subjectfeaturesen_US
dc.subjectInformation gainen_US
dc.subjectparaphraseen_US
dc.subjectparaphrase sentence pairsen_US
dc.subjectClassification (of information)en_US
dc.titleAttribute value-range detection in identification of paraphrase sentence pairsen_US
dc.title.alternativeEs-Anlatimli Cümle Çiftlerin Belirlenmesinde Öz Nitelik Deger Araliklarinin Tespitien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU.2016.7496009-
dc.identifier.scopus2-s2.0-84982833742en_US
dc.authorscopusid57190737073-
dc.authorscopusid24314851200-
dc.identifier.startpage1393en_US
dc.identifier.endpage1396en_US
dc.identifier.wosWOS:000391250900325en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2686.pdf
  Restricted Access
329.99 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

72
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.