Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3603
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBocugoz E.-
dc.contributor.authorErdil E.-
dc.contributor.authorArgunsah A.O.-
dc.contributor.authorUnay D.-
dc.contributor.authorCetin M.-
dc.date.accessioned2023-06-16T15:00:54Z-
dc.date.available2023-06-16T15:00:54Z-
dc.date.issued2017-
dc.identifier.isbn9.78151E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU.2017.7960482-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3603-
dc.description25th Signal Processing and Communications Applications Conference, SIU 2017 -- 15 May 2017 through 18 May 2017 -- 128703en_US
dc.description.abstractAnalyzing morphological and structural changes of dendritic spines in 2-photon microscopy images in time is important for neuroscience researchers. Correct segmentation of dendritic spines is an important step of developing robust and reliable automatic tools for such analysis. In this paper, we propose an approach for segmentation of 3D dendritic spines using nonparametric shape priors. The proposed method learns the prior distribution of shapes through Parzen density estimation on the training set of shapes. Then, the posterior distribution of shapes is obtained by combining the learned prior distribution with a data term in a Bayesian framework. Finally, the segmentation result that maximizes the posterior is found using active contours. Experimental results demonstrate that using nonparametric shape priors leads to better 3D dendritic spine segmentation results. © 2017 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2017 25th Signal Processing and Communications Applications Conference, SIU 2017en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject3D dendritic spine segmentationen_US
dc.subjectlevel setsen_US
dc.subjectnonparametric shape priorsen_US
dc.subjectParzen density estimatoren_US
dc.subjectImage segmentationen_US
dc.subjectBayesian frameworksen_US
dc.subjectDendritic spineen_US
dc.subjectLevel Seten_US
dc.subjectParzen density estimationen_US
dc.subjectParzen density estimatoren_US
dc.subjectPosterior distributionsen_US
dc.subjectSegmentation resultsen_US
dc.subjectShape priorsen_US
dc.subjectSignal processingen_US
dc.title3D dendritic spine segmentation using nonparametric shape priorsen_US
dc.title.alternative3B Dendritik Dikenlerin Parametrik Olmayan Şekil Ön Bilgisi Kullanilarak Bölütlenmesien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU.2017.7960482-
dc.identifier.scopus2-s2.0-85026309893en_US
dc.authorscopusid57195220040-
dc.authorscopusid24723512300-
dc.authorscopusid55922238900-
dc.authorscopusid35561229800-
dc.identifier.wosWOS:000413813100345en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2692.pdf228.12 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

328
checked on Nov 18, 2024

Download(s)

22
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.