Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3604
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtabakilachini N.-
dc.contributor.authorErdil E.-
dc.contributor.authorArgunsah A.O.-
dc.contributor.authorRada L.-
dc.contributor.authorUnay D.-
dc.contributor.authorCetin M.-
dc.date.accessioned2023-06-16T15:00:55Z-
dc.date.available2023-06-16T15:00:55Z-
dc.date.issued2017-
dc.identifier.isbn9.78151E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU.2017.7960599-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3604-
dc.description25th Signal Processing and Communications Applications Conference, SIU 2017 -- 15 May 2017 through 18 May 2017 -- 128703en_US
dc.description.abstractSegmentation of biomedical images is a challenging task, especially when there is low quality or missing data. The use of prior information can provide significant assistance for obtaining more accurate results. In this paper we propose a new approach for dendritic spine segmentation from microscopic images over time, which is motivated by incorporating shape information from previous time points to segment a spine in the current time point. In particular, using a training set consisting of spines in two consecutive time points to construct coupled shape priors, and given the segmentation in the previous time point, we can improve the segmentation process of the spine in the current time point. Our approach has been evaluated on 2-photon microscopy images of dendritic spines and its effectiveness has been demonstrated by both visual and quantitative results. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2017 25th Signal Processing and Communications Applications Conference, SIU 2017en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject2-photon microscopyen_US
dc.subjectcoupled shape priorsen_US
dc.subjectdendritic spine segmentationen_US
dc.subjectDynamic segmentationen_US
dc.subjectnonparametric shape priorsen_US
dc.subjectPhotonsen_US
dc.subjectSignal processingen_US
dc.subjectBiomedical imagesen_US
dc.subjectDendritic spineen_US
dc.subjectDynamic segmentationen_US
dc.subjectPrior informationen_US
dc.subjectQuantitative resulten_US
dc.subjectSegmentation processen_US
dc.subjectShape informationen_US
dc.subjectShape priorsen_US
dc.subjectImage segmentationen_US
dc.titleCoupled shape priors for dynamic segmentation of dendritic spinesen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU.2017.7960599-
dc.identifier.scopus2-s2.0-85026319344en_US
dc.authorscopusid57195217921-
dc.authorscopusid24723512300-
dc.authorscopusid55268679000-
dc.authorscopusid55922238900-
dc.authorscopusid35561229800-
dc.identifier.wosWOS:000413813100462en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2693.pdf438.59 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

68
checked on Nov 18, 2024

Download(s)

38
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.