Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3606
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOguz K.-
dc.contributor.authorCanliturk B.-
dc.contributor.authorKabar C.-
dc.contributor.authorDurukan O.-
dc.contributor.authorOzceylan B.-
dc.date.accessioned2023-06-16T15:00:55Z-
dc.date.available2023-06-16T15:00:55Z-
dc.date.issued2018-
dc.identifier.isbn9.78154E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU.2018.8404220-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3606-
dc.descriptionAselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netasen_US
dc.description26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 -- 137780en_US
dc.description.abstractDementia affects the lives of millions of people. Digital recognition and evaluation of the Clock Drawing Test that is used for diagnosis will remove subjective manual evaluation and will increase the awareness and early diagnosis. The proposed system evaluates the clocks drawn to the paper and loaded to it by extracting their graphical features. Besides image processing methods, artificial neural networks are used to detect the numbers. The results of the system are in accordance with the manual evaluation for 35 clocks drawn by healthy subjects. © 2018 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof26th IEEE Signal Processing and Communications Applications Conference, SIU 2018en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectCharacter recognitionen_US
dc.subjectClock drawing testen_US
dc.subjectHough transformen_US
dc.subjectCharacter recognitionen_US
dc.subjectClocksen_US
dc.subjectDiagnosisen_US
dc.subjectHough transformsen_US
dc.subjectImage processingen_US
dc.subjectProcessingen_US
dc.subjectDigital recognitionen_US
dc.subjectEarly diagnosisen_US
dc.subjectGraphical featuresen_US
dc.subjectHealthy subjectsen_US
dc.subjectImage processing - methodsen_US
dc.subjectNeural networksen_US
dc.titleDigital recognition and evaluation of the clock drawing testen_US
dc.title.alternativeAraç Sürüs Karakteristiginin Analizi ve Kaza Tespitien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU.2018.8404220-
dc.identifier.scopus2-s2.0-85082355470en_US
dc.authorscopusid54902980200-
dc.authorscopusid57215917668-
dc.authorscopusid57215911608-
dc.authorscopusid57215911440-
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.identifier.wosWOS:000511448500073en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.05. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2695.pdf
  Restricted Access
188.48 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

Page view(s)

72
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.