Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3611
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaya M.-
dc.contributor.authorAci C.-
dc.contributor.authorMishchenko, Yuriy-
dc.date.accessioned2023-06-16T15:00:56Z-
dc.date.available2023-06-16T15:00:56Z-
dc.date.issued2018-
dc.identifier.isbn9.78E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU.2018.8404612-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3611-
dc.descriptionAselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netasen_US
dc.description26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 -- 137780en_US
dc.description.abstractOperators who use a vehicle have less control load with fast improvements of robotic and autonom systems so that situation causes losing of attention an operator while important control processes. In this paper, a passive brain computer interface for monitoring mental attention state of human individuals by using electroencephalographic (EEG) brain activity imaging is developed using a machine learning data analysis method Support Vector Machine. Also a mental state detection system using EEG data is evolved as well. It has been determined that changes in EEG activity in the frontal and parietal lobes occurring in the 1-5 Hz and 1015 Hz frequency bands are associated with changes in attention state. Such changes were detected with 90% to 95% accuracy in experimental settings. The results of the work done will guide the design of future systems to monitor the status of the operators via EEG brain activity data. © 2018 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof26th IEEE Signal Processing and Communications Applications Conference, SIU 2018en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAttention state detectionen_US
dc.subjectBCIen_US
dc.subjectEEGen_US
dc.subjectSVMen_US
dc.subjectBrainen_US
dc.subjectElectroencephalographyen_US
dc.subjectInterface statesen_US
dc.subjectInterfaces (computer)en_US
dc.subjectNeurophysiologyen_US
dc.subjectSignal processingen_US
dc.subjectSupport vector machinesen_US
dc.subjectBrain activityen_US
dc.subjectControl loadsen_US
dc.subjectControl processen_US
dc.subjectElectroencephalographic (EEG)en_US
dc.subjectExperimental settingsen_US
dc.subjectMental stateen_US
dc.subjectPassive brain-computer interfacesen_US
dc.subjectState Detectionen_US
dc.subjectBrain computer interfaceen_US
dc.titleA passive brain-computer interface for monitoring mental attention stateen_US
dc.title.alternativeZihinsel Dikkat Durumu İzlemi için Pasif Bir Beyin-bilgisayar Arayüzüen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU.2018.8404612-
dc.identifier.scopus2-s2.0-85050815313-
dc.authorscopusid57190737208-
dc.authorscopusid36903063500-
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.identifier.wosWOS:000511448500465-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1tr-
item.grantfulltextreserved-
item.openairetypeConference Object-
crisitem.author.dept13.02. English Preparatory Program-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2701.pdf
  Restricted Access
920.88 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

176
checked on May 19, 2025

Download(s)

10
checked on May 19, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.