Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3611
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kaya M. | - |
dc.contributor.author | Aci C. | - |
dc.contributor.author | Mishchenko, Yuriy | - |
dc.date.accessioned | 2023-06-16T15:00:56Z | - |
dc.date.available | 2023-06-16T15:00:56Z | - |
dc.date.issued | 2018 | - |
dc.identifier.isbn | 9.78154E+12 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU.2018.8404612 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3611 | - |
dc.description | Aselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netas | en_US |
dc.description | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 -- 137780 | en_US |
dc.description.abstract | Operators who use a vehicle have less control load with fast improvements of robotic and autonom systems so that situation causes losing of attention an operator while important control processes. In this paper, a passive brain computer interface for monitoring mental attention state of human individuals by using electroencephalographic (EEG) brain activity imaging is developed using a machine learning data analysis method Support Vector Machine. Also a mental state detection system using EEG data is evolved as well. It has been determined that changes in EEG activity in the frontal and parietal lobes occurring in the 1-5 Hz and 1015 Hz frequency bands are associated with changes in attention state. Such changes were detected with 90% to 95% accuracy in experimental settings. The results of the work done will guide the design of future systems to monitor the status of the operators via EEG brain activity data. © 2018 IEEE. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Attention state detection | en_US |
dc.subject | BCI | en_US |
dc.subject | EEG | en_US |
dc.subject | SVM | en_US |
dc.subject | Brain | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject | Interface states | en_US |
dc.subject | Interfaces (computer) | en_US |
dc.subject | Neurophysiology | en_US |
dc.subject | Signal processing | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Brain activity | en_US |
dc.subject | Control loads | en_US |
dc.subject | Control process | en_US |
dc.subject | Electroencephalographic (EEG) | en_US |
dc.subject | Experimental settings | en_US |
dc.subject | Mental state | en_US |
dc.subject | Passive brain-computer interfaces | en_US |
dc.subject | State Detection | en_US |
dc.subject | Brain computer interface | en_US |
dc.title | A passive brain-computer interface for monitoring mental attention state | en_US |
dc.title.alternative | Zihinsel dikkat durumu izlemi için pasif bir beyin-bilgisayar arayüzü | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/SIU.2018.8404612 | - |
dc.identifier.scopus | 2-s2.0-85050815313 | en_US |
dc.authorscopusid | 57190737208 | - |
dc.authorscopusid | 36903063500 | - |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 4 | en_US |
dc.identifier.wos | WOS:000511448500465 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | tr | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.02. Biomedical Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2701.pdf Restricted Access | 920.88 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Page view(s)
100
checked on Nov 18, 2024
Download(s)
8
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.