Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3611
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaya M.-
dc.contributor.authorAci C.-
dc.contributor.authorMishchenko, Yuriy-
dc.date.accessioned2023-06-16T15:00:56Z-
dc.date.available2023-06-16T15:00:56Z-
dc.date.issued2018-
dc.identifier.isbn9.78154E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU.2018.8404612-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3611-
dc.descriptionAselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netasen_US
dc.description26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 -- 137780en_US
dc.description.abstractOperators who use a vehicle have less control load with fast improvements of robotic and autonom systems so that situation causes losing of attention an operator while important control processes. In this paper, a passive brain computer interface for monitoring mental attention state of human individuals by using electroencephalographic (EEG) brain activity imaging is developed using a machine learning data analysis method Support Vector Machine. Also a mental state detection system using EEG data is evolved as well. It has been determined that changes in EEG activity in the frontal and parietal lobes occurring in the 1-5 Hz and 1015 Hz frequency bands are associated with changes in attention state. Such changes were detected with 90% to 95% accuracy in experimental settings. The results of the work done will guide the design of future systems to monitor the status of the operators via EEG brain activity data. © 2018 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof26th IEEE Signal Processing and Communications Applications Conference, SIU 2018en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAttention state detectionen_US
dc.subjectBCIen_US
dc.subjectEEGen_US
dc.subjectSVMen_US
dc.subjectBrainen_US
dc.subjectElectroencephalographyen_US
dc.subjectInterface statesen_US
dc.subjectInterfaces (computer)en_US
dc.subjectNeurophysiologyen_US
dc.subjectSignal processingen_US
dc.subjectSupport vector machinesen_US
dc.subjectBrain activityen_US
dc.subjectControl loadsen_US
dc.subjectControl processen_US
dc.subjectElectroencephalographic (EEG)en_US
dc.subjectExperimental settingsen_US
dc.subjectMental stateen_US
dc.subjectPassive brain-computer interfacesen_US
dc.subjectState Detectionen_US
dc.subjectBrain computer interfaceen_US
dc.titleA passive brain-computer interface for monitoring mental attention stateen_US
dc.title.alternativeZihinsel dikkat durumu izlemi için pasif bir beyin-bilgisayar arayüzüen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU.2018.8404612-
dc.identifier.scopus2-s2.0-85050815313en_US
dc.authorscopusid57190737208-
dc.authorscopusid36903063500-
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.identifier.wosWOS:000511448500465en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2701.pdf
  Restricted Access
920.88 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

100
checked on Nov 18, 2024

Download(s)

8
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.