Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3616
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOktar Y.-
dc.contributor.authorUlucan O.-
dc.contributor.authorKarakaya D.-
dc.contributor.authorErsoy E.O.-
dc.contributor.authorTurkan M.-
dc.date.accessioned2023-06-16T15:01:48Z-
dc.date.available2023-06-16T15:01:48Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU49456.2020.9302144-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3616-
dc.description28th Signal Processing and Communications Applications Conference, SIU 2020 -- 5 October 2020 through 7 October 2020 -- 166413en_US
dc.description.abstractIt is arguable that whether the single camera captured (monocular) image datasets are sufficient enough to train and test convolutional neural networks (CNNs) for imitating the biological neural network structures of the human brain. As human visual system works in binocular, the collaboration of the eyes with the two brain lobes needs more investigation for improvements in such CNN-based visual imagery analysis applications. It is indeed questionable that if respective visual fields of each eye and the associated brain lobes are responsible for different learning abilities of the same scene. There are such open questions in this field of research which need rigorous investigation in order to further understand the nature of the human visual system, hence improve the currently available deep learning applications. This paper analyses a binocular CNNs architecture that is more analogous to the biological structure of the human visual system than the conventional deep learning techniques. While taking a structure called optic chiasma into account, this architecture consists of basically two parallel CNN structures associated with each visual field and the brain lobe, fully connected later possibly as in the primary visual cortex. Experimental results demonstrate that binocular learning of two different visual fields leads to better classification rates on average, when compared to classical CNN architectures. © 2020 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBinocular visionen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectDeep neural networksen_US
dc.subjectHuman visual systemen_US
dc.subjectBinocular visionen_US
dc.subjectBinocularsen_US
dc.subjectConvolutionen_US
dc.subjectDeep learningen_US
dc.subjectImage enhancementen_US
dc.subjectLearning systemsen_US
dc.subjectNetwork architectureen_US
dc.subjectStereo image processingen_US
dc.subjectBiological neural networksen_US
dc.subjectBiological structuresen_US
dc.subjectClassification ratesen_US
dc.subjectConvolutional networksen_US
dc.subjectHuman Visual Systemen_US
dc.subjectLearning abilitiesen_US
dc.subjectLearning techniquesen_US
dc.subjectPrimary visual cortexen_US
dc.subjectConvolutional neural networksen_US
dc.titleBinocular Vision based Convolutional Networksen_US
dc.title.alternativeBinokuler Gorus tabanli Evrisimsel Aglaren_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU49456.2020.9302144-
dc.identifier.scopus2-s2.0-85100292107en_US
dc.authorscopusid56560191100-
dc.authorscopusid57212583921-
dc.authorscopusid57221636606-
dc.authorscopusid57219464962-
dc.identifier.wosWOS:000653136100118en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.10. Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2706.pdf
  Restricted Access
797.67 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

62
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.