Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3618
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura O.K.-
dc.contributor.authorPehlivan S.-
dc.contributor.authorAkan A.-
dc.date.accessioned2023-06-16T15:01:48Z-
dc.date.available2023-06-16T15:01:48Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU49456.2020.9302302-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3618-
dc.description28th Signal Processing and Communications Applications Conference, SIU 2020 -- 5 October 2020 through 7 October 2020 -- 166413en_US
dc.description.abstractIn the literature, several signal processing techniques have been used to diagnose epilepsy which is a nervous system disease. However most of these techniques fail to analyse EEG signals which are dynamic and non-linear. In this study, an approach which utilizes a data-driven technique called Dynamic Mode Decomposition (DMD) that was originally developed to be used in fluid mechanics was proposed. Features that were belonged to EEG signals were calculated using DMD method and with the help of different classifiers, classification of the preseizure and seizure EEG signals was performed. Obtained results showed that the proposed method presented an alternative to approaches that are based on Empirical Mode Decomposition and its derivatives. © 2020 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectDynamic Mode Decompositionen_US
dc.subjectEEGen_US
dc.subjectEpileptic Seizureen_US
dc.subjectFluid mechanicsen_US
dc.subjectNeurologyen_US
dc.subjectData driven techniqueen_US
dc.subjectDynamic mode decompositionsen_US
dc.subjectEEG signalsen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectEpileptic EEGen_US
dc.subjectNon linearen_US
dc.subjectSignal processing techniqueen_US
dc.subjectBiomedical signal processingen_US
dc.titleClassification of Epileptic EEG Signals Using Dynamic Mode Decompositionen_US
dc.title.alternativeDinamik Kip Ayrisimi ile Epileptik EEG Sinyallerinin Siniflandirilmasien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU49456.2020.9302302-
dc.identifier.scopus2-s2.0-85100321303en_US
dc.authorscopusid57195223021-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:000653136100276en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2708.pdf
  Restricted Access
364.44 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

Page view(s)

76
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.