Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3619
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoyak R.-
dc.contributor.authorErsoy E.O.-
dc.contributor.authorNavruz E.-
dc.contributor.authorFakultesi M.-
dc.contributor.authorUnay D.-
dc.contributor.authorOksuz I.-
dc.date.accessioned2023-06-16T15:01:48Z-
dc.date.available2023-06-16T15:01:48Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU49456.2020.9302455-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3619-
dc.description28th Signal Processing and Communications Applications Conference, SIU 2020 -- 5 October 2020 through 7 October 2020 -- 166413en_US
dc.description.abstractMagnetic Resonance Fingerprinting is a recent technique which aims at providing simultaneous measurements of multiple parameters. MRF works by varying acquisition parameters in a pseudorandom manner so as to get unique, uncorrelated signal evolutions from each tissue. MRF is a dictionary based approach, and thus requires a database. This database can be created by simulating the signal evolutions from first principles using different physical models for a wide variety of tissue parameter combinations. Having this dictionary, a pattern recognition algorithm is used to match the acquired signal evolutions from each voxel with each signal evolution in the dictionary. In this paper, we compare the efficiency of deep learning based feature extraction method and neural network architectures in order to achieve state-of-the-art accuracy in dictionary matching for MRF. Our results showcase successful dictionary matching with high accuracy both quantitatively and qualitatively. © 2020 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMagnetic Resonance Imaging, MR Fingerprinting, Deep Learning, Medical Image Analysis, Dictionary Matching, Pattern Recognition.en_US
dc.subjectDeep learningen_US
dc.subjectExtractionen_US
dc.subjectFeature extractionen_US
dc.subjectMagnetic resonanceen_US
dc.subjectMagnetorheological fluidsen_US
dc.subjectNetwork architectureen_US
dc.subjectSignal processingen_US
dc.subjectTissueen_US
dc.subjectAcquisition parametersen_US
dc.subjectDictionary matchingen_US
dc.subjectLearning-based feature extractionsen_US
dc.subjectMultiple parametersen_US
dc.subjectParameter combinationen_US
dc.subjectPattern recognition algorithmsen_US
dc.subjectSimultaneous measurementen_US
dc.subjectUncorrelated signalsen_US
dc.subjectNeural networksen_US
dc.titleAccurate Dictionary Matching for MR Fingerprinting Using Neural Networks and Feature Extractionen_US
dc.title.alternativeSinir Aglari ve Oznitelik Cikarma Yoluyla MR Parmak Izi Yontemi icin Hassas Sozluk Eslestirmesien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU49456.2020.9302455-
dc.identifier.scopus2-s2.0-85100311462en_US
dc.authorscopusid57209734831-
dc.authorscopusid57221630382-
dc.authorscopusid57221818377-
dc.authorscopusid55922238900-
dc.authorscopusid55793268700-
dc.identifier.wosWOS:000653136100428en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2709.pdf
  Restricted Access
759.68 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

108
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.