Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3620
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCeylan, Burak-
dc.contributor.authorTuzun, Serkan-
dc.contributor.authorAkan, Aydın-
dc.date.accessioned2023-06-16T15:01:48Z-
dc.date.available2023-06-16T15:01:48Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU49456.2020.9302508-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3620-
dc.description28th Signal Processing and Communications Applications Conference, SIU 2020 -- 5 October 2020 through 7 October 2020 -- 166413en_US
dc.description.abstractIn this study, an estimation system based on electroencephalogram (EEG) signals has been developed for use in neuromarketing applications. Determination of the degree of consumer liking a product by processing the biological data (EEG, facial expressions, eye tracking, Galvanic skin response, etc.) recorded while viewing the product images or videos has become an important research topic. In this study, 32-channel EEG signals were recorded from subjects while they watch two different car advertisement videos, and the liking status was determined. After watching the car commercial videos, the subjects were asked to vote on the rating of different images (front view, front console, side view, rear view, rear light, logo and front grill) of the cars. The signals corresponding to these different video regions from the EEG recordings were segmented and analyzed by the Empirical Mode Decomposition (EMD) method. Several statistical features were extracted from the resulting Intrinsic Mode Functions and the liking status classification was performed. Classification results obtained with Support Vector Machines (SVM) classifiers indicate that the proposed EEG-based liking detection method may be used in neuromarketing studies. © 2020 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEEG signalsen_US
dc.subjectempirical mode decompositionen_US
dc.subjectliking status detectionen_US
dc.subjectneuromarketingen_US
dc.subjectData handlingen_US
dc.subjectElectroencephalographyen_US
dc.subjectElectrophysiologyen_US
dc.subjectEye trackingen_US
dc.subjectSupport vector machinesen_US
dc.subjectClassification resultsen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectEstimation systemsen_US
dc.subjectFacial Expressionsen_US
dc.subjectGalvanic skin responseen_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectStatistical featuresen_US
dc.subjectBiomedical signal processingen_US
dc.titleAn EEG Based Liking Status Detection Method for Neuromarketing Applicationsen_US
dc.title.alternativeNoropazarlama Uygulamalari Icin EEG Tabanli Bir Begeni Durumu Tespit Yontemien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU49456.2020.9302508-
dc.identifier.scopus2-s2.0-85100291864en_US
dc.authorscopusid57202281275-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:000653136100480en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2711.pdf
  Restricted Access
887.38 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

Page view(s)

58
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.