Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3622
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCeylan B.-
dc.contributor.authorTuzun S.-
dc.contributor.authorAkan A.-
dc.date.accessioned2023-06-16T15:01:48Z-
dc.date.available2023-06-16T15:01:48Z-
dc.date.issued2022-
dc.identifier.isbn9.78167E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864792-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3622-
dc.description30th Signal Processing and Communications Applications Conference, SIU 2022 -- 15 May 2022 through 18 May 2022 -- 182415en_US
dc.description.abstractEmotion estimation is a very important and popular research area from human-computer interaction point of view. In this study, a liking estimation method is proposed by using electroencephalogram (EEG) signals for neuromarketing applications. The liking status is estimated by using signal processing and machine learning methods applied to EEG recordings taken while the subjects watched the advertisement videos of two different car brands. After viewing videos, the participants were asked to give ratings from 1 to 5 while they are presented the picture of 7 car sections (front view, console, side view, rear view, stop lamp, logo and front grille) taken from the advertisement video. EEG segments corresponding to these regions were analyzed by Multivariate Empirical Mode Decomposition (MEMD) method. Various features were calculated from the extracted intrinsic mode functions (IMF) and liking status classification was performed. The successful results show that the proposed MEMD-based method may be used in neuromarketing studies. © 2022 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2022 30th Signal Processing and Communications Applications Conference, SIU 2022en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEEGen_US
dc.subjectemotional stateen_US
dc.subjectliking statusen_US
dc.subjectMEMDen_US
dc.subjectneuromarketingen_US
dc.subjectElectroencephalographyen_US
dc.subjectHuman computer interactionen_US
dc.subjectLearning systemsen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEmotion estimationen_US
dc.subjectEmotional stateen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectLiking statusen_US
dc.subjectMode decomposition methoden_US
dc.subjectMultivariate empirical mode decompositionen_US
dc.subjectNeuromarketingen_US
dc.subjectResearch areasen_US
dc.subjectSignal decompositionen_US
dc.subjectEmpirical mode decompositionen_US
dc.titleLiking Status Estimation Using EEG Signals and Mode Decomposition Methoden_US
dc.title.alternativeKip Ayrişim Yöntemi ve EEG Sinyalleri Kullanilarak Be?eni Durum Kestirimien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU55565.2022.9864792-
dc.identifier.scopus2-s2.0-85138714611en_US
dc.authorscopusid57202281275-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:001307163400131en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2713.pdf
  Restricted Access
2.66 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

64
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.